School of Mathematics

Primes and Equations

Richard Taylor
Institute for Advanced Study
February 1, 2012

One of the oldest subjects in mathematics is the study of Diophantine equations, i.e., the study of whole number (or fractional) solutions to polynomial equations. It remains one of the most active areas of mathematics today. Perhaps the most basic tool is the simple idea of “congruences,” particularly congruences modulo a prime number. In this talk, Richard Taylor, Professor in the School of Mathematics, introduces prime numbers and congruences and illustrates their connection to Diophantine equations. He also describes recent progress in this area, an application, and reciprocity laws, which lie at the heart of much recent progress on Diophantine equations, including Wiles’s proof of Fermat’s last theorem.

CSDM: A Survey of Lower Bounds for the Resolution Proof System

Avi Wigderson
Herbert H. Maass Professor, School of Mathematics, Institute for Advanced Study
January 31, 2012
The Resolution proof system is among the most basic and popular for proving propositional tautologies, and underlies many of the automated theorem proving systems in use today. I'll start by defining the Resolution system, and its place in the proof-complexity picture.

Symplectic Dynamics Seminar: On Conjugacy of Convex Billiards

Vadim Kaloshin
Pennsylvania State University; Member, School of Mathematics, Institute for Advanced Study
January 25, 2012
There are indications that in the 80s Guillemin posed a question: If billiard maps are conjugate, can we say that domains are the same up to isometry?

On one side, we show that conjugacy of different domains can't be C^1 near the boundary. In particular, billiard maps of the circle and an ellipse are both analytically integrable, but not C^1 conjugate. On the other side, if conjugate near the boundary s smoother, then domains are the same up to isometry.
(This is joint work with A. Sorrentino.)

Symplectic Dynamics Seminar: Symplectic Structures and Dynamics on Vortex Membranes

Boris Khesin
University of Toronto; Member, School of Mathematics, Institute for Advanced Study
January 25, 2012
We present a Hamiltonian framework for higher-dimensional vortex filaments (or membranes) and vortex sheets as singular 2-forms with support of codimensions 2 and 1, respectively, i.e. singular elements of the dual to the Lie algebra of divergence-free vector fields. It turns out that the localized induction approximation (LIA) of the hydrodynamical Euler equation describes the skew-mean-curvature flow on higher vortex filaments of codimension 2 in any any dimension, which generalizes the classical binormal, or vortex filament, equation in 3D.