# School of Mathematics

## Two-bubble dynamics for the equivariant wave maps equation

## On the notion of genus for division algebras and algebraic groups

## Structure theorems for intertwining wave operators

## Cap-sets in $(F_q)^n$ and related problems

## Motivic correlators and locally symmetric spaces III

According to Langlands, pure motives are related to a certain class of automorphic representations.

Can one see mixed motives in the automorphic set-up? For examples, can one see periods of mixed motives in entirely automorphic terms? The goal of this and the next lecture is to supply some examples.

We define motivic correlators describing the structure of the motivic fundamental group $\pi_1^{\mathcal M}(X)$ of a curve. Their relevance to the questions raised above is explained by the following examples.

## Nonlinear descent on moduli of local systems

## Fooling intersections of low-weight halfspaces

A weight-$t$ halfspace is a Boolean function $f(x)=\mathrm{sign}(w_1 x_1 + \cdots + w_n x_n - \theta)$ where each $w_i$ is an integer in $\{-t,\dots,t\}.$ We give an explicit pseudorandom generator that $\delta$-fools any intersection of $k$ weight-$t$ halfspaces with seed length poly$(\log n, \log k,t,1/\delta)$. In particular, our result gives an explicit PRG that fools any intersection of any quasipoly$(n)$ number of halfspaces of any polylog$(n)$ weight to any $1/$polylog$(n)$ accuracy using seed length polylog$(n).$