Peter Sarnak

Institute for Advanced Study; Faculty, School of Mathematics

March 3, 2014

We discuss various Gaussian ensembles for real homogeneous polynomials in several variables and the question of the distribution of the topologies of the connected components of the zero sets of a typical such random real hypersurface. For the "real -Fubini -Study ensemble" and at the other end the "monochromatic wave ensemble ", one can show that these have universal laws. Some qualitative features of these laws are also established. Joint work with I. Wigman.