Limiting Eigenvalue Distribution of Random Matrices Involving Tensor Product

Leonid Pastur
B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine
April 16, 2014
We consider two classes of \(n \times n\) sample covariance matrices arising in quantum informatics. The first class consists of matrices whose data matrix has \(m\) independent columns each of which is the tensor product of \(k\) independent \(d\)-dimensional vectors, thus \(n=d^k\). The matrices of the second class belong to \(\mathcal{M}_n(\mathbb{C}^{d_1} \otimes \mathbb{C}^{d_2}), \ n=d_1 d_2\) and are obtained from the standard sample covariance matrices by the partial transposition in \(\mathbb{C}^{d_2}\).

IP = PSPACE via error correcting codes

Or Meir
Institute for Advanced Study; Member, School of Mathematics
April 15, 2014
The IP theorem, which asserts that IP = PSPACE (Lund et. al., and Shamir, in J. ACM 39(4)), is one of the major achievements of complexity theory. The known proofs of the theorem are based on the arithmetization technique, which transforms a quantified Boolean formula into a related polynomial. The intuition that underlies the use of polynomials is commonly explained by the fact that polynomials constitute good error correcting codes. However, the known proofs seem tailored to the use of polynomials, and do not generalize to arbitrary error correcting codes.

Toroidal Soap Bubbles: Constant Mean Curvature Tori in \(S^3\) and \(R^3\)

Emma Carberry
University of Sydney
April 14, 2014
Constant mean curvature (CMC) tori in \(S^3\), \(R^3\) or \(H^3\) are in bijective correspondence with spectral curve data, consisting of a hyperelliptic curve, a line bundle on this curve and some additional data, which in particular determines the relevant space form. This point of view is particularly relevant for considering moduli-space questions, such as the prevalence of tori amongst CMC planes. I will address these periodicity questions for the spherical and Euclidean cases, using Whitham deformations, which I will explain.

Local Correctability of Expander Codes

Brett Hemenway
University of Pennsylvania
April 14, 2014
An error-correcting code is called locally decodable if there exists a decoding algorithm that can recover any symbol of the message with high probability by reading only a small number of symbols of the corrupted codeword. There is a fundamental tradeoff in locally decodable codes between the rate (the ratio of message length to codeword length) and the locality (the number of symbols read by the decoder). Ideally, one strives for high rate and low locality.

Applications of additive combinatorics to Diophantine equations

Alexei Skorobogatov
Imperial College London
April 10, 2014
The work of Green, Tao and Ziegler can be used to prove existence and approximation properties for rational solutions of the Diophantine equations that describe representations of a product of norm forms by a product of linear polynomials. One can also prove that the Brauer-Manin obstruction precisely describes the closure of rational points in the adelic points for pencils of conics and quadrics over \(\mathbb Q\) when the degenerate fibres are all defined over \(\mathbb Q\).

Pages