(Non)uniqueness questions in mean curvature flow

Wang 2019 01 22

Lu Wang
University of Wisconsin–Madison; Member, School of Mathematics
January 22, 2019

Mean curvature flow is the negative gradient flow of the
volume functional which decreases the volume of (hyper)surfaces in the
steepest way. Starting from any closed surface, the flow exists
uniquely for a short period of time, but always develops singularities
in finite time. In this talk, we discuss some non-uniqueness problems
of the mean curvature flow passing through singularities. The talk is
mainly prepared for non-specialists of geometric flows.