## The meta-theory of dependent type theories

Vladimir Voevodsky

Professor, School of Mathematics

February 27, 2017

Vladimir Voevodsky

Professor, School of Mathematics

February 27, 2017

Tony Yue Yu

Visitor, School of Mathematics

February 13, 2017

Berkovich geometry is an enhancement of classical rigid analytic geometry. Mirror symmetry is a conjectural duality between Calabi-Yau manifolds. I will explain (1) what is mirror symmetry, (2) what are Berkovich spaces, (3) how Berkovich spaces appear naturally in the study of mirror symmetry, and (4) how we obtain a better understanding of several aspects of mirror symmetry via this viewpoint. This member seminar serves also as an overview of my minicourses in the same week.

Alexandru Oancea

Université Pierre et Marie Curie; Member, School of Mathematics

February 6, 2017

The Hofer-Zehnder capacity of a symplectic manifold is one of the early symplectic invariants: it is a non-negative real number, possibly infinite. Finiteness of this capacity has strong consequences for Hamiltonian dynamics, and it is an old question to decide whether it holds for small compact neighborhoods of closed Lagrangians. I will explain a positive answer to this question for a class of manifolds whose free loop spaces admit nontrivial local systems.

Timothy Perutz

University of Texas, Austin; von Neumann Fellow, School of Mathematics

January 30, 2017

I'll describe joint work with Sheel Ganatra and Nick Sheridan which rigorously establishes the relationship between different aspects of the mirror symmetry phenomenon for Calabi-Yau manifolds. Homological mirror symmetry---an abstract, categorical statement---implies Hodge theoretic mirror symmetry, a concrete relation between counts of rational curves and variations of Hodge structure.

Lauren Williams

University of California, Berkeley; von Neumann Fellow, School of Mathematics

January 23, 2017

Nathaniel Bottman

Member, School of Mathematics

December 12, 2016

The Fukaya category of a symplectic manifold is a robust intersection theory of its Lagrangian submanifolds. Over the past decade, ideas emerging from Wehrheim--Woodward's theory of quilts have suggested a method for producing maps between the Fukaya categories of different symplectic manifolds. I have proposed that one should consider maps controlled by compactified moduli spaces of marked parallel lines in the plane, called "2-associahedra".

Thomas Church

Stanford University; Member, School of Mathematics

November 28, 2016

Representation theory over $\mathbb Z$ is famously intractable, but "representation stability" provides a way to get around these difficulties, at least asymptotically, by enlarging our groups until they behave more like commutative rings. Moreover, it turns out that important questions in topology/number theory/representation theory/... correspond to asking whether familiar algebraic properties hold for these "rings".

Florian Sprung

Princeton University; Visitor, School of Mathematics

November 21, 2016

Computing the class number is a hard question. In 1956, Iwasawa announced a surprising formula for an infinite family of class numbers, starting an entire theory that lies behind this phenomenon. We will not focus too much on this theory (Iwasawa theory), but rather describe some analogous formulas for modular forms. Their origins have not been explained yet, especially when the $p$-th Fourier coefficient is small.

Adam Marcus

Princeton University; Member, School of Mathematics

November 14, 2016

For certain applications of linear algebra, it is useful to understand the distribution of the largest eigenvalue of a finite sum of discrete random matrices. One of the useful tools in this area is the "Matrix Chernoff" bound which gives tight concentration around the largest eigenvalue of the expectation. In some situations, one can get better bounds by showing that the sum behaves (in some rough way) like one would expect from Gaussian random matrices.

Frank Calegari

University of Chicago

November 4, 2016

One of the main ideas that comes up in the proof of Fermat's Last Theorem is a way of "counting" 2-dimensional Galois representations over $\mathbb Q$ with certain prescribed properties. We discuss the problem of counting other types of Galois representations, and show how this leads naturally to questions related to derived algebraic geometry and the cohomology of arithmetic groups. A key example will be the case of 1-dimensional representations of a general number field.