# Members Seminar

## Groups of Even Type of Medium Size

In this talk we will discuss recent progresses meant as a contribution to the GLS-project, the second generation proof of the Classification of Finite Simple Groups (jointly with R. Lyons, R. Solomon, Ch. Parker).

## Moment-Angle Complexes, Spaces of Hard-Disks and Their Associated Stable Decompositions

Topological spaces given by either (1) complements of coordinate planes in Euclidean space or (2) spaces of non-overlapping hard-disks in a fixed disk have several features in common. The main results, in joint work with many people, give decompositions for the so-called "stable structure" of these spaces as well as consequences of these decompositions.

This talk will present definitions as well as basic properties.

## (Some) Generic Properties of (Some) Infinite Groups

This talk will be a biased survey of recent work on various properties of elements of infinite groups, which can be shown to hold with high probability once the elements are sampled from a large enough subset of the group (examples of groups: linear groups over the integers, free groups, hyperbolic groups, mapping class groups, automorphism groups of free groups . . . )

## Modularity of Galois Representations

In this expository talk, I will outline a plausible story of how the study of congruences between modular forms of Serre and Swinnerton-Dyer, which was inspired by Ramanujan's celebrated congruences for his tau-function, led to the formulation of Serre's modularity conjecture. I will give some hints of the ideas used in its proof given in joint work with J-P. Wintenberger. I will end by pointing out just one of the many interesting obstructions to generalising the strategy of the proof to get modularity results in more general situations.

## Configuration Spaces of Hard Discs in a Box

The "hard discs" model of matter has been studied intensely in statistical mechanics and theoretical chemistry for decades. From computer simulations it appears that there is a solid--liquid phase transition once the relative area of the discs is about 0.71, but little seems known mathematically. Indeed, Gian-Carlo Rota suggested that if we knew the total measure of the underlying configuration space, "we would know, for example, why water boils at 100 degrees on the basis of purely atomic calculations."

## Beauty and Truth in Mathematics; a Tribute to Albert Einstein and Hermann Weyl

## Shimura Varieties, Local Models and Geometric Realizations of Langlands Correspondences

I will introduce Shimura varieties and discuss the role they play in the conjectural relashionship between Galois representations and automorphic forms. I will explain what is meant by a geometric realization of Langlands correspondences, and how the geometry of Shimura varieties and their local models conjecturally explains many aspects of these correspondences. This talk is intended as an introduction for non-number theorists to an approach to Langlands conjectures via arithmetic algebraic geometry.

## Values of L-Functions and Modular Forms

This will be an introduction to special value formulas for L-functions and especially the uses of modular forms in establishing some of them -- beginning with the values of the Riemann zeta function at negative integers and hopefully arriving at some more recent work on the Birch-Swinnerton-Dyer formula.

## Metaphors in Systolic Geometry

The systolic inequality says that if we take any metric on an n-dimensional torus with volume 1, then we can find a non-contractible curve in the torus with length at most C(n). A remarkable feature of the inequality is how general it is: it holds for all metrics.