# Joint IAS/PU Number Theory

## Mod p Points on Shimura Varieties

A conjecture of Langlands-Rapoport predicts the structure of the mod p points on a Shimura variety. The conjecture forms part of Langlands' program to understand the zeta function of a Shimura variety in terms of automorphic L-functions.

I will report on progress towards the conjecture in the case of Shimura varieties attached to non-exceptional groups.

## The Tamagawa Number Formula via Chiral Homology

## Arithmetic Fake Compact Hermitian Symmetric Spaces

## Joint IAS-PU Symplectic Geometry Seminar: Symplectic Inverse Spectral Theory in the Semiclassical Regime for Toric Systems . . . and Beyond

## A New Formulation of the Gross-Zagier Formula

In this talk, I will present a formulation of the Gross-Zagier formula over Shimura curves using automorphic representations with algebraic coefficients. It is a joint work with Shou-wu Zhang and Wei Zhang.

## On Real Zeros of Holomorphic Hecke Cusp Forms and Sieving Short Intervals

A. Ghosh and P. Sarnak have recently initiated the study of so-called real zeros of holomorphic Hecke cusp forms, that is zeros on certain geodesic segments on which the cusp form (or a multiple of it) takes real values. In the talk I'll first introduce the problem and outline their argument that many such zeros exist if many short intervals contain numbers whose all prime factors belong to a certain subset of primes. Then I'll speak about new results on this sieving problem which lead to improved lower bounds for the number of real zeros.

## Serre's Conjectures on the Number of Rational Points of Bounded Height

**JOINT IAS/PU NUMBER THEORY SEMINAR**

We give a survey of recent results on conjectures of Heath-Brown and Serre on the asymptotic density of rational points of bounded height. The main tool in the proofs is a new global determinant method inspired by the local real and p-adic determinant methods of Bombieri-Pila and Heath-Brown.