Joint IAS/PU Number Theory

Automorphy for coherent cohomology of Shimura varieties

Jun Su
Princeton University
December 5, 2017
We consider the coherent cohomology of toroidal compactifications of Shimura varieties with coefficients in the canonical extensions of automorphic vector bundles and show that they can be computed as relative Lie algebra cohomology of automorphic representations. Consequently, any Galois representation attached to these coherent cohomology should be automorphic. Our proof is based on Franke’s work on singular cohomology of locally symmteric spaces and via Faltings’ B-G-G spectral sequence we’ve also strengthened Franke’s result in the Shimura variety case.

Locally symmetric spaces: $p$-adic aspects

Laurent Fargues
Institut de Mathématiques de Jussieu
November 30, 2017
$p$-adic period spaces have been introduced by Rapoport and Zink as a generalization of Drinfeld upper half spaces and Lubin-Tate spaces. Those are open subsets of a rigid analytic $p$-adic flag manifold. An approximation of this open subset is the so called weakly admissible locus obtained by removing a profinite set of closed Schubert varieties. I will explain a recent theorem characterizing when the period space coincides with the weakly admissible locus. The proof consists in a thorough study of modifications of G-bundles on the curve.

Shimura curves and new abc bounds

Hector Pasten
Harvard University
November 28, 2017
Existing unconditional progress on the abc conjecture and Szpiro's conjecture is rather limited and coming from essentially only two approaches: The theory of linear forms in $p$-adic logarithms, and bounds for the degree of modular parametrizations of elliptic curves by using congruences of modular forms. In this talk I will discuss a new approach as well as some unconditional results that it yields.

Joint equidistribution of CM points

Ilya Khayutin
Princeton University; Veblen Research Instructor, School of Mathematics
November 21, 2017

A celebrated theorem of Duke states that Picard/Galois orbits of CM points on a complex modular curve equidistribute in the limit when the absolute value of the discriminant goes to infinity. The equidistribution of Picard and Galois orbits of special points in products of modular curves was conjectured by Michel and Venkatesh and as part of the equidistribution strengthening of the André-Oort conjecture. I will explain the proof of a recent theorem making progress towards this conjecture.

On the notion of genus for division algebras and algebraic groups

Andrei Rapinchuk
University of Virginia
November 2, 2017
Let $D$ be a central division algebra of degree $n$ over a field $K$. One defines the genus gen$(D)$ of $D$ as the set of classes $[D']$ in the Brauer group Br$(K)$ where $D'$ is a central division $K$-algebra of degree $n$ having the same isomorphism classes of maximal subfields as $D$. I will review the results on gen$(D)$ obtained in the last several years, in particular the finiteness theorem for gen$(D)$ when $K$ is finitely generated of characteristic not dividing $n$.

Nonlinear descent on moduli of local systems

Junho Peter Whang
Princeton University
October 31, 2017
In 1880, Markoff studied a cubic Diophantine equation in three variables now known as the Markoff equation, and observed that its integral solutions satisfy a form of nonlinear descent. Generalizing this, we consider families of log Calabi-Yau varieties arising as moduli spaces for local systems on topological surfaces, and prove a structure theorem for their integral points using mapping class group dynamics.

Elliptic curves of rank two and generalised Kato classes

Francesc Castella
Princeton University
October 24, 2017
The generalised Kato classes of Darmon-Rotger arise as $p$-adic limits of diagonal cycles on triple products of modular curves, and in some cases, they are predicted to have a bearing on the arithmetic of elliptic curves over $Q$ of rank two. In this talk, we will report on a joint work in progress with Ming-Lun Hsieh concerning a special case of the conjectures of Darmon-Rotger.

\(2^\infty\)-Selmer groups, \(2^\infty\)-class groups, and Goldfeld's conjecture

Alex Smith
Harvard University
September 14, 2017
Take \(E/Q\) to be an elliptic curve with full rational 2-torsion (satisfying some extra technical assumptions). In this talk, we will show that 100% of the quadratic twists of \(E\) have rank less than two, thus proving that the BSD conjecture implies Goldfeld's conjecture in these families. To do this, we will extend Kane's distributional results on the 2-Selmer groups in these families to \(2^k\)-Selmer groups for any \(k > 1\).

The $p$-curvature conjecture and monodromy about simple closed loops

Ananth Shankar
Harvard University
May 11, 2017
The Grothendieck-Katz $p$-curvature conjecture is an analogue of the Hasse Principle for differential equations. It states that a set of arithmetic differential equations on a variety has finite monodromy if its $p$-curvature vanishes modulo $p$, for almost all primes $p$. We prove that if the variety is a generic curve, then every simple closed loop has finite monodromy.