Peter Sarnak

Topologies of nodal sets of random band limited functions

Peter Sarnak
Institute for Advanced Study; Faculty, School of Mathematics
March 3, 2014
We discuss various Gaussian ensembles for real homogeneous polynomials in several variables and the question of the distribution of the topologies of the connected components of the zero sets of a typical such random real hypersurface. For the "real -Fubini -Study ensemble" and at the other end the "monochromatic wave ensemble ", one can show that these have universal laws. Some qualitative features of these laws are also established. Joint work with I. Wigman.

Nodal Lines of Maass Forms and Critical Percolation

Peter Sarnak
Institute for Advanced Study
March 20, 2012

We describe some results concerning the number of connected components of nodal lines of high frequency Maass forms on the modular surface. Based on heuristics connecting these to a critical percolation model, Bogomolny and Schmit have conjectured, and numerics confirm, that this number follows an asymptotic law. While proving this appears to be very difficult, some approximations to it can be proved by developing number theoretic and analytic methods. The work report on is joint with A. Ghosh and A. Reznikov.