Princeton University

Measures on spaces of Riemannian metrics

Dmitry Jakobson
McGill University
July 21, 2014
This is joint work with Y. Canzani, B. Clarke, N. Kamran, L. Silberman and J. Taylor. We construct Gaussian measure on the manifold of Riemannian metrics with the fixed volume form. We show that diameter and Laplace eigenvalue and volume entropy functionals are all integrable with respect to our measures. We also compute the characteristic function for the \(L^2\) (Ebin) distance from a random metric to the reference metric.

Recovering elliptic curves from their \(p\)-torsion

Benjamin Bakker
New York University
May 2, 2014
Given an elliptic curve \(E\) over a field \(k\), its \(p\)-torsion \(E[p]\) gives a 2-dimensional representation of the Galois group \(G_k\) over \(\mathbb F_p\). The Frey-Mazur conjecture asserts that for \(k= \mathbb Q\) and \(p > 13\), \(E\) is in fact determined up to isogeny by the representation \(E[p]\). In joint work with J.