# Theoretical Machine Learning

## Online Learning in Reactive Environments

## How will we do mathematics in 2030 ?

We make the case that over the coming decade, computer assisted reasoning will become far more widely used in the mathematical sciences. This includes interactive and automatic theorem verification, symbolic algebra, and emerging technologies such as formal knowledge repositories, semantic search and intelligent textbooks.

## Nonconvex Minimax Optimization

Minimax optimization, especially in its general nonconvex formulation, has found extensive applications in modern machine learning, in settings such as generative adversarial networks (GANs) and adversarial training. It brings a series of unique challenges in addition to those that already persist in nonconvex minimization problems. This talk will cover a set of new phenomena, open problems, and recent results in this emerging field.

## Some Statistical Results on Deep Learning: Interpolation, Optimality and Sparsity

This talk discusses three aspects of deep learning from a statistical perspective: interpolation, optimality and sparsity. The first one attempts to interpret the double descent phenomenon by precisely characterizing a U-shaped curve within the “over-fitting regime,” while the second one focuses on the statistical optimality of neural network classification in a student-teacher framework. This talk is concluded by proposing sparsity induced training of neural network with statistical guarantee.

## Rethinking Control

Linear dynamical systems are a continuous subclass of reinforcement learning models that are widely used in robotics, finance, engineering, and meteorology. Classical control, since the works of Kalman, has focused on dynamics with Gaussian i.i.d. noise, quadratic loss functions and, in terms of provably efficient algorithms, known systems and observed state.