## Topology of resolvent problems

In this talk I will describe a topological approach to some problems about algebraic functions due to Klein and Hilbert. As a sample application of these methods, I will explain the solution to the following problem of Felix Klein: Let $\Phi_{g,n}$ be the algebraic function that assigns to a (principally polarized) abelian variety its $n$-torsion points. What is the minimal $d$ such that, after a rational change of variables, $\Phi_{g,n}$ can be written as an algebraic function of $d$ variables? This is joint work with Mark Kisin and Jesse Wolfson.