Joint IAS-PU Symplectic Geometry Seminar

On Zimmer's conjecture

Sebastian Hurtado-Salazar
University of Chicago
April 6, 2017

The group $\mathrm{SL}_n(\mathbb Z)$ (when $n > 2$) is very rigid, for example, Margulis proved all its linear representations come from representations of $\mathrm{SL}_n(\mathbb R)$ and are as simple as one can imagine. Zimmer's conjecture states that certain "non-linear" representations ( group actions by diffeomorphisms on a closed manifold) come also from simple algebraic constructions.

Rigid holomorphic curves are generically super-rigid

Chris Wendl
Humboldt-Universität zu Berlin
March 31, 2017
I will explain the main ideas of a proof that for generic compatible almost complex structures in symplectic manifolds of dimension at least 6, closed embedded J-holomorphic curves of index 0 are always "super-rigid", implying that their multiple covers are never limits of sequences of curves with distinct images. This condition is especially interesting in Calabi-Yau 3-folds, where it follows that the Gromov-Witten invariants can be "localized" and computed in terms of Euler classes of obstruction bundles for a finite set of disjoint embedded curves.

The many forms of rigidity for symplectic embeddings

Felix Schlenk
University of Neuchâtel
March 30, 2017
We look at the following chain of symplectic embedding problems in dimension four. \[E(1, a) \to Z_4(A),\ E(1, a) \to C_4(A),\ E(1, a) \to P(A, ba) (b \in {\mathbb N}_{\geq 2}),\ E(1, a) \to T_4(A).\] Here $E(1, a)$ is a symplectic ellipsoid, $Z_4(A)$ is the symplectic cylinder $D_2(A) \times R_2$, $C_4(A) = D_2(A) \times D_2(A)$ is the cube and $P(A, bA) = D_2(A) \times D_2(bA)$ the polydisc, and $T_4(A) = T_2(A) \times T_2(A)$, where $T_2(A)$ is the 2-torus of area $A$. In each problem we ask for the smallest $A$ for which $E(1, a)$ symplectically embeds.

Symplectic homology for cobordisms

Alexandru Oancea
Université Pierre et Marie Curie; Member, School of Mathematics
February 23, 2017
Symplectic homology for a Liouville cobordism (possibly filled at the negative end) generalizes simultaneously the symplectic homology of Liouville domains and the Rabinowitz-Floer homology of their boundaries. I intend to explain a conceptual framework within which one can understand it, and give a sample application which shows how it can be used in order to obstruct cobordisms between contact manifolds. Based on joint work with Kai Cieliebak and Peter Albers.

$C^\infty$ closing lemma for three-dimensional Reeb flows via embedded contact homology

Kei Irie
Kyoto University
February 16, 2017
$C^r$ closing lemma is an important statement in the theory of dynamical systems, which implies that for a $C^r$ generic system the union of periodic orbits is dense in the nonwondering domain. $C^1$ closing lemma is proved in many classes of dynamical systems, however $C^r$ closing lemma with $r > 1$ is proved only for few cases. In this talk, I'll prove $C^\infty$ closing lemma for Reeb flows on closed contact three-manifolds. The proof uses recent developments in quantitative aspects of embedded contact homology (ECH).