Analysis Seminar

Winding for Wave Maps

Max Engelstein
University of Minnesota
June 1, 2020
Wave maps are harmonic maps from a Lorentzian domain to a Riemannian target. Like solutions to many energy critical PDE, wave maps can develop singularities where the energy concentrates on arbitrary small scales but the norm stays bounded. Zooming in on these singularities yields a harmonic map (called a soliton or bubble) in the weak limit. One fundamental question is whether this weak limit is unique, that is to say, whether different bubbles may appear as the limit of different sequences of rescalings.

Quantitative decompositions of Lipschitz mappings

Guy C. David
Ball State University
May 12, 2020
Given a Lipschitz map, it is often useful to chop the domain into pieces on which the map has simple behavior. For example, depending on the dimensions of source and target, one may ask for pieces on which the map behaves like a bi-Lipschitz embedding or like a linear projection. For many issues, it is even more useful if this decomposition is quantitative, i.e., with bounds independent of the particular map or spaces involved.

Ellipses of small eccentricity are determined by their Dirichlet (or, Neumann) spectra

Steven Morris Zelditch
Northwestern University
April 28, 2020
In 1965, M. Kac proved that discs were uniquely determined by their Dirichlet (or, Neumann) spectra. Until recently, disks were the only smooth plane domains known to be determined by their eigenvalues. Recently, H. Hezari and I proved that ellipses of small eccentricity are also determined uniquely by their Dirichlet (or, Neumann) spectra. The proof uses recent results of Avila, de Simoi, and Kaloshin, proving that nearly circular plane domains with rationally integrable billiards must be ellipses.

A variational approach to the regularity theory for the Monge-Ampère equation

Felix Otto
Max Planck Institute Leipzig
April 20, 2020
We present a purely variational approach to the regularity theory for the Monge-Ampère equation, or rather optimal transportation, introduced with M. Goldman. Following De Giorgi’s philosophy for the regularity theory of minimal surfaces, it is based on the approximation of the displacement by a harmonic gradient, which leads to a One-Step Improvement Lemma, and feeds into a Campanato iteration on the C1,α-level for the displacement, capitalizing on affine invariance.

Higher order rectifiability and Reifenberg parametrizations

Silvia Ghinassi
Member, School of Mathematics
March 9, 2020
We provide geometric sufficient conditions for Reifenberg flat sets of any integer dimension in Euclidean space to be parametrized by a Lipschitz map with Hölder derivatives. The conditions use a Jones type square function and all statements are quantitative in that the Hölder and Lipschitz constants of the parametrizations depend on such a function. We use these results to prove sufficient conditions for higher order rectifiability of sets and measures.