School of Mathematics

Ancient Solutions to Geometric Flows

Panagiota Daskalopoulos
Columbia University
May 20, 2019
Abstract: Some of the most important problems in geometric evolution partial differential equations are related to the understanding of singularities. This usually happens through a blow up procedure near the singularity which uses the scaling properties of the equation. In the case of a parabolic equation the blow up analysis often leads to special solutions which are defined for all time −∞ T≤+∞. We refer to them as ancient solutions. The classification of such solutions often sheds new insight upon the singularity analysis.

Uniform Rectifiability via Perimeter Minimization

Tatiana Toro
University of Washington
May 20, 2019
Abstract: Quantitative geometric measure theory has played a fundamental role in the development of harmonic analysis, potential theory and partial differential equations on non-smooth domains. In general the tools used in this area differ greatly from those used in geometric measure theory as it appears in the context of geometric analysis. In this course we will discuss how ideas arising when studying perimeter minimization questions yield interesting and powerful results concerning uniform rectifiability of sets. The course will be mostly self-contained.

A probabilistic Takens theorem

Yonatan Gutman
Institute of Mathematics of the Polish Academy of Sciences
May 16, 2019
Let $X \subset \R^N$ be a Borel set, $\mu$ a Borel probability measure on $X$ and $T:X \to X$ a Lipschitz and injective map. Fix $k \in \N$ greater than the (Hausdorff) dimension of $X$ and assume that the set of $p$-periodic points has dimension smaller than $p$ for $p=1, \ldots, k-1$. We prove that for a typical polynomial perturbation $\tilde{h}$ of a given Lipschitz map $h : X \to \R$, the $k$-delay coordinate map $x \mapsto (\tilde{h}(x), \tilde{h}(Tx), \ldots, \tilde{h}(T^{k-1}x))$ is injective on a set of full measure $\mu$.

Singularity formation for some incompressible Euler flows

Tarek Elgindi
University of California, San Diego
May 6, 2019

We describe a recent construction of self-similar blow-up solutions of the incompressible Euler equation. A consequence of the construction is that there exist finite-energy $C^{1,a}$ solutions to the Euler equation which develop a singularity in finite time for some range of $a>0$. The approach we follow is to isolate a simple non-linear equation which encodes the leading order dynamics of solutions to the Euler equation in some regimes and then prove that the simple equation has stable self-similar blow-up solutions.

Singularities in reductions of Shimura varieties

Thomas Haines
University of Maryland
May 2, 2019

The singularities in the reduction modulo $p$ of the modular
curve $Y_0(p)$ are visualized by the famous picture of two curves
meeting transversally at the supersingular points. It is a fundamental
question to understand the singularities which arise in the reductions
modulo $p$ of integral models of Shimura varieties. For PEL type
Shimura varieties with parahoric level structure at $p$, this question
has been studied since the 1990's. Due to the recent construction of

Chow motives, L-functions, and powers of algebraic Hecke characters

Laure Flapan
Northeastern University/MSRI
April 22, 2019

The Langlands and Fontaine–Mazur conjectures in number theory describe when an automorphic representation f arises geometrically, meaning that there is a smooth projective variety X, or more generally a Chow motive M in the cohomology of X, such that there is an equality of L-functions L(M,s) = L(f,s). We explicitly describe how to produce such a variety X and Chow motive M in the case of powers of certain automorphic representations, called algebraic Hecke characters. This is joint work with J. Lang.

Loops in hydrodynamic turbulence

Katepalli Sreenivasan
New York University; Member, School of Mathematics
April 17, 2019
An important question in hydrodynamic turbulence concerns the scaling proprties in the inertial range. Many years of experimental and computational work suggests---some would say, convincingly shows---that anomalous scaling prevails. If so, this rules out the standard paradigm proposed by Kolmogorov. The situation is not so obvious if one considers circulation around loops as the scaling objects instead of the traditional velocity increments.