School of Mathematics

Cover Times, Blanket Times, and Majorizing Measures

James Lee
University of Washington
April 12, 2010

The cover time of a graph is one of the most basic and well-studied properties of the simple random walk, and yet a number of fundamental questions concerning cover times have remained open. We show that there is a deep connection between cover times of graphs and Talagrand's majorizing measure theory. In particular, we prove that the cover time can be characterized, up to universal constants, by the majorizing measure value of a certain metric space on the underlying graph.

Measuring Shape With Homology

Robert MacPherson
Institute for Advanced Study
April 7, 2010

The ordinary homology of a subset S of Euclidean space depends only on its topology. By systematically organizing homology of neighborhoods of S, we get quantities that measure the shape of S, rather than just its topology. These quantities can be used to define a new notion of fractional dimension of S. They can also be effectively calculated on a computer.