School of Mathematics

A Constant-factor Approximation Algorithm for the Asymmetric Traveling Salesman Problem

Ola Svensson
École polytechnique fédérale de Lausanne
January 23, 2018

We give a constant-factor approximation algorithm for the asymmetric traveling salesman problem. Our approximation guarantee is analyzed with respect to the standard LP relaxation, and thus our result confirms the conjectured constant integrality gap of that relaxation.

The Matching Problem in General Graphs is in Quasi-NC

Ola Svensson
École polytechnique fédérale de Lausanne
January 22, 2018

We show that the perfect matching problem in general graphs is in Quasi-NC. That is, we give a deterministic parallel algorithm which runs in polylogarithmic time on quasi-polynomially many processors. The result is obtained by a derandomization of the Isolation Lemma for perfect matchings, which was introduced in the classic paper by Mulmuley, Vazirani and Vazirani to obtain a Randomized NC algorithm.

A PSPACE construction of a hitting set for the closure of small algebraic circuits

Amir Shpilka
Tel Aviv University
December 12, 2017

We study the complexity of constructing a hitting set for the class of polynomials that can be infinitesimally approximated by polynomials that are computed by polynomial sized algebraic circuits, over the real or complex numbers. Specifically, we show that there is a PSPACE algorithm that given nsr in unary outputs a set of inputs from of size poly(nsr), with poly(nsr) bit complexity, that hits all $n$-variate polynomials of degree $r$ that are the limit of size $s$ algebraic circuits.

Recent developments in knot contact homology

Lenny Ng
Duke University
December 11, 2017
Knot contact homology is a knot invariant derived from counting holomorphic curves with boundary on the Legendrian conormal to a knot. I will discuss some new developments around the subject, including an enhancement that completely determines the knot (joint work with Tobias Ekholm and Vivek Shende) and recent progress in the circle of ideas connecting knot contact homology, recurrence relations for colored HOMFLY polynomials, and topological strings (joint work in progress with Tobias Ekholm).