# School of Mathematics

## An Application of a Conjecture of Mazur-Tate to Supersingular Elliptic Curves

In 1987, Barry Mazur and John Tate formulated refined conjectures of the "Birch and Swinnerton-Dyer type", and one of these conjectures was essentially proved in the prime conductor case by

Ehud de Shalit in 1995. One of the main objects in de Shalit's work is the so-called *refined* $\mathscr{L}$*invariant*, which happens to be a Hecke operator. We apply some results of the theory of Mazur's

Eisenstein ideal to study in which power of the Eisenstein ideal $\mathscr{L}$ belongs. One corollary of our

## Elliptic measures and the geometry of domains

Given a bounded domain $\Omega$, the harmonic measure $\omega$ is a probability measure on $\partial \Omega$ and it characterizes where a Brownian traveller moving in $\Omega$ is likely to exit the domain from. The elliptic measure is a non-homogenous variant of harmonic measure.

## Isoperimetry and boundaries with almost constant mean curvature

## Min-max solutions of the Ginzburg-Landau equations on closed manifolds

## Why can't we prove tensor rank and Waring rank lower bounds?

## Interactive Coding Over the Noisy Broadcast Channel

A set of n players, each holding a private input bit, communicate over a noisy broadcast channel. Their mutual goal is for all players to learn all inputs. At each round one of the players broadcasts a bit to all the other players, and the bit received by each player is flipped with a fixed constant probability (independently for each recipient). How many rounds are needed?

This problem was first suggested by El Gamal in 1984. In 1988, Gallager gave an elegant noise-resistant protocol requiring only

## On the topology and index of minimal surfaces

## Spacetime positive mass theorem

## Non-commutative rank

A linear matrix is a matrix whose entries are linear forms in some indeterminates $t_1,\dots, t_m$ with coefficients in some field $F$. The *commutative rank* of a linear matrix is obtained by interpreting it as a matrix with entries in the function field $F(t_1,\dots,t_m)$, and is directly related to the central PIT (polynomial identity testing) problem. The