## Reed-Muller codes for random erasures and errors

Amir Shpilka

Tel Aviv University

April 26, 2016

Reed-Muller codes encode an $m$-variate polynomial of degree $r$ by evaluating it on all points in $\{0,1\}^m$. Its distance is $2^{m-r}$ and so it cannot correct more than that many errors/erasures in the worst case. For random errors one may hope for a better result. In his seminal paper Shannon exactly determined the amount of errors and erasures one can hope to correct for codes of a given rate. Codes that achieve Shannon's bound are called capacity achieving codes.