# School of Mathematics

## A converse theorem of Gross-Zagier and Kolyvagin: CM case

## Quasi-periodic solutions to nonlinear PDE's

## Nematic liquid crystal phase in a system of interacting dimers

## On the strength of comparison queries

Joint work with Daniel Kane (UCSD) and Shachar Lovett (UCSD)

We construct near optimal linear decision trees for a variety of decision problems in combinatorics and discrete geometry.

For example, for any constant $k$, we construct linear decision trees that solve the $k$-SUM problem on $n$ elements using $O(n \log^2 n)$ linear queries. This settles a problem studied by [Meyer auf der Heide ’84, Meiser ‘93, Erickson ‘95, Ailon and Chazelle ‘05, Gronlund and Pettie '14, Gold and Sharir ’15, Cardinal et al '15, Ezra and Sharir ’16] and others.

## Motivic correlators and locally symmetric spaces II

According to Langlands, pure motives are related to a certain class of automorphic representations.

Can one see mixed motives in the automorphic set-up? For examples, can one see periods of mixed motives in entirely automorphic terms? The goal of this and the next lecture is to supply some examples.

We define motivic correlators describing the structure of the motivic fundamental group $\pi_1^{\mathcal M}(X)$ of a curve. Their relevance to the questions raised above is explained by the following examples.

## Elliptic curves of rank two and generalised Kato classes

## A nearly optimal lower bound on the approximate degree of AC$^0$

The approximate degree of a Boolean function $f$ is the least degree of a real polynomial that approximates $f$ pointwise to error at most $1/3$. For any constant $\delta > 0$, we exhibit an AC$^0$ function of approximate degree $\Omega(n^{1-\delta})$. This improves over the best previous lower bound of $\Omega(n^{2/3})$ due to Aaronson and Shi, and nearly matches the trivial upper bound of $n$ that holds for any function.