School of Mathematics

Calibrations of Degree Two and Regularity Issues

Constante Bellettini
Princeton University; Member, School of Mathematics
April 9, 2013

Calibrated currents naturally appear when dealing with several geometric questions, some aspects of which require a deep understanding of regularity properties of calibrated currents. We will review some of these issues, then focusing on the two-dimensional case where we will show a surprising connection with pseudo-holomorphic curves and an infinitesimal regularity result, namely the uniqueness of tangent cones

Resonances for Normally Hyperbolic Trapped Sets

Semyon Dyatlov
University of California
April 2, 2013

Resonances are complex analogs of eigenvalues for Laplacians on noncompact manifolds, arising in long time resonance expansions of linear waves. We prove a Weyl type asymptotic formula for the number of resonances in a strip, provided that the set of trapped geodesics is r-normally hyperbolic for large r and satisfies a pinching condition. Our dynamical assumptions are stable under small smooth perturbations and motivated by applications to black holes. We also establish a high frequency analog of resonance expansions.