## Generative Modeling by Estimating Gradients of the Data Distribution

Stefano Ermon

Stanford University

May 12, 2020

Existing generative models are typically based on explicit representations of probability distributions (e.g., autoregressive or VAEs) or implicit sampling procedures (e.g., GANs). We propose an alternative approach based on modeling directly the vector field of gradients of the data distribution (scores). Our framework allows flexible energy-based model architectures, requires no sampling during training or the use of adversarial training methods.