School of Mathematics

(Some) Generic Properties of (Some) Infinite Groups

Igor Rivin
Temple University; Member, School of Mathematics
November 29, 2010

This talk will be a biased survey of recent work on various properties of elements of infinite groups, which can be shown to hold with high probability once the elements are sampled from a large enough subset of the group (examples of groups: linear groups over the integers, free groups, hyperbolic groups, mapping class groups, automorphism groups of free groups . . . )

Self-Correction, Distance Estimation and Local Testing of Codes

Dana Moshkovitz
Massachusetts Institute of Technology
November 29, 2010

We construct linear codes of almost-linear length and linear distance that can be locally self-corrected on average from a constant number of queries:

1. Given oracle access to a word $w\in\Sigma^n$ that is at least $\varepsilon$-close to a codeword $c$, and an index $i\in [n]$ to correct, with high probability over $i$ and over the internal randomness, the local algorithm returns a list of possible corrections that contains $c_i$.

Planar Convexity, Infinite Perfect Graphs and Lipschitz Continuity

Menachem Kojman
Ben Gurion University of the Negev; Member, School of Mathematics
November 16, 2010

Infinite continuous graphs emerge naturally in the geometric analysis of closed planar sets which cannot be presented as countable union of convex sets. The classification of such graphs leads in turn to properties of large classes of real functions - e.g. the class of Lipschitz continuous functions - and to meta-mathematical properties of sub-ideals of the meager ideal (the sigma-ideal generated by nowhere dense sets over a Polish space) which reduce to finite Ramsey-type relations between random graphs and perfect graphs.

Algebraic Cycles on Picarad Moduli Spaces of Abelian Varieties

Michael Rapoport
University of Bonn
November 11, 2010

Picard moduli spaces parametrize principally polarized abelian varieties with complex multiplication by the ring of integers in an imaginary-quadratic field. The loci where the abelian varieties split off an elliptic curve in a controlled way are divisors on this moduli space. We study the intersection behaviour of these divisors and prove in the non-degenerate case a relation between their intersection numbers and Fourier coefficients of the derivative at s=0 of a certain incoherent Eisenstein series for the unitary group. This is joint work with Kudla.

On the Realization of Some Degenerate Automorphic Forms on Certain Griffiths-Schmid Varieties

Henri Carayol
University of Strasbourg
November 10, 2010

GALOIS REPRESENTATIONS AND AUTOMORPHIC FORMS SEMINAR

Some automorphic forms, despite the fact they are algebraic, do not have any interpretation as cohomology classes on a Shimura variety: therefore nothing is known at present on their expected arithmetic properties. I shall explain how such forms appear to be related to more general objects (Griffiths-Schmid varieties) and discuss some related rationality questions.

An Elementary Proof of the Restricted Invertibility Theorem

Nikhil Srivastava
Institute for Advanced Study
November 9, 2010

We give an elementary proof of a generalization of Bourgain and Tzafriri's Restricted Invertibility Theorem, which says roughly that any matrix with columns of unit length and bounded operator norm has a large coordinate subspace on which it is well-invertible. Our proof gives the tightest known form of this result, is constructive, and provides a deterministic polynomial time algorithm for finding the desired subspace.

The Graph Removal Lemma

Jacob Fox
Massachusetts Institute of Technology
November 8, 2010

Let H be a fixed graph with h vertices. The graph removal lemma states that every graph on n vertices with o(nh) copies of H can be made H-free by removing o(n2) edges. We give a new proof which avoids Szemeredi's regularity lemma and gives a better bound. This approach also works to give improved bounds for the directed and multicolored analogues of the graph removal lemma. This answers questions of Alon and Gowers.