## Notions of Scalar Curvature

Mikhail Gromov

IHES

October 16, 2018

Mikhail Gromov

IHES

October 16, 2018

James Pascaleff

University of Illinois, Urbana-Champaign

October 15, 2018

A symplectic Lie groupoid is a Lie groupoid with a

multiplicative symplectic form. We take the perspective that such an object is symplectic manifold with an extra categorical structure. Applying the machinery of Floer theory, the extra structure is expected to yield a monoidal structure on the Fukaya category, and new operations on the closed string invariants. I will take an examples-based approach to working out what these structures are, focusing on cases where the

Floer theory is tractable, such as the cotangent bundle of a compact manifold.

multiplicative symplectic form. We take the perspective that such an object is symplectic manifold with an extra categorical structure. Applying the machinery of Floer theory, the extra structure is expected to yield a monoidal structure on the Fukaya category, and new operations on the closed string invariants. I will take an examples-based approach to working out what these structures are, focusing on cases where the

Floer theory is tractable, such as the cotangent bundle of a compact manifold.

Vinod Vaikuntanathan

MIT

October 15, 2018

We will describe a recently discovered connection between private information retrieval and secret sharing, and a new secret-sharing scheme for general access structures that breaks a long-conjectured exponential barrier.

Based on joint work with Tianren Liu and Hoeteck Wee.

Camillo De Lellis

Professor, School of Mathematics

October 15, 2018

Christina Sormani

IAS

October 15, 2018

Samit Dasgupta

Duke University

October 11, 2018

Hilbert's 12th problem is to provide explicit analytic formulae for elements generating the maximal abelian extension of a given number field. In this talk I will describe an approach to Hilbert’s 12th that involves proving exact p-adic formulae for Gross-Stark units. This builds on prior joint work with Kakde and Ventullo in which we proved Gross’s conjectural leading term formula for Deligne-Ribet p-adic L-functions at s=0. This is joint work with Mahesh Kakde.

Olga Turanova

University of California, Los Angeles; Visitor, School of Mathematics

October 10, 2018

Brian Freidin

Brown University; Visitor, School of Mathematics

October 10, 2018

Jeroen Zuiddam

Member, School of Mathematics

October 9, 2018

These two talks will introduce the asymptotic rank and asymptotic subrank of tensors and graphs - notions that are key to understanding basic questions in several fields including algebraic complexity theory, information theory and combinatorics.

Matrix rank is well-known to be multiplicative under the Kronecker product, additive under the direct sum, normalized on identity matrices and non-increasing under multiplying from the left and from the right by any matrices. In fact, matrix rank is the only real matrix parameter with these four properties.

Chao Li

Stanford University; Visitor, School of Mathematics

October 9, 2018

Following a program proposed by Gromov, we study metric singularities of positive scalar curvature of codimension two and three. In addition, we describe a comparison theorem for positive scalar curvature that is captured by polyhedra. Part of this talk is based on joint work with C. Mantoulidis.