School of Mathematics

Integral points and curves on moduli of local systems

Junho Peter Whang
Princeton University
December 8, 2017
The classical affine cubic surface of Markoff has a well-known interpretation as a moduli space for local systems on the once-punctured torus. We show that the analogous moduli spaces for general topological surfaces form a rich family of log Calabi-Yau varieties, where a structure theorem for their integral points can be established using mapping class group descent. Related analysis also yields new results on the arithmetic of algebraic curves in these moduli spaces, including finiteness of imaginary quadratic integral points for non-special curves.

Diophantine analysis in thin orbits

Alex Kontorovich
Rutgers University; von Neumann Fellow, School of Mathematics
December 8, 2017
We will explain how the circle method can be used in the setting of thin orbits, by sketching the proof (joint with Bourgain) of the asymptotic local-global principle for Apollonian circle packings. We will mention extensions of this method due to Zhang and Fuchs-Stange-Zhang to certain crystallographic circle packings, as well as the method's limitations.

Integral points on Markoff-type cubic surfaces

Amit Ghosh
Oklahoma State University
December 8, 2017
We report on some recent work with Peter Sarnak. For integers $k$, we consider the affine cubic surfaces $V_k$ given by $M(x) = x_1^2 + x_2 + x_3^2 − x_1 x_2 x_3 = k$. Then for almost all $k$, the Hasse Principle holds, namely that $V_k(Z)$ is non-empty if $V_k(Z_p)$ is non-empty for all primes $p$. Moreover there are infinitely many $k$'s for which it fails. There is an action of a non-linear group on the integral points, producing finitely many orbits. For most $k$, we obtain an exact description of these orbits, the number of which we call "class numbers".

Spectral gaps without frustration

Marius Lemm
California Institute of Technology; Member, School of Mathematics
December 6, 2017
In spin systems, the existence of a spectral gap has far-reaching consequences. So-called "frustration-free" spin systems form a subclass that is special enough to make the spectral gap problem amenable and, at the same time, broad enough to include physically relevant examples. We discuss "finite-size criteria", which allow to bound the spectral gap of the infinite system by the spectral gap of finite subsystems. We focus on the connection between spectral gaps and boundary conditions. Joint work with E. Mozgunov.

Motivic correlators and locally symmetric spaces IV

Alexander Goncharov
Yale University; Member, School of Mathematics and Natural Sciences
December 5, 2017

According to Langlands, pure motives are related to a certain class of automorphic representations.

Can one see mixed motives in the automorphic set-up? For examples, can one see periods of mixed motives in entirely automorphic terms? The goal of this and the next lecture is to supply some examples.

We define motivic correlators describing the structure of the motivic fundamental group $\pi_1^{\mathcal M}(X)$ of a curve. Their relevance to the questions raised above is explained by the following examples.

Automorphy for coherent cohomology of Shimura varieties

Jun Su
Princeton University
December 5, 2017
We consider the coherent cohomology of toroidal compactifications of Shimura varieties with coefficients in the canonical extensions of automorphic vector bundles and show that they can be computed as relative Lie algebra cohomology of automorphic representations. Consequently, any Galois representation attached to these coherent cohomology should be automorphic. Our proof is based on Franke’s work on singular cohomology of locally symmteric spaces and via Faltings’ B-G-G spectral sequence we’ve also strengthened Franke’s result in the Shimura variety case.