The Green-Tao theorem
and
a relative Szemerédi theorem

Yufei Zhao

Massachusetts Institute of Technology

Joint work with David Conlon (Oxford) and Jacob Fox (MIT)

IAS, March 2014
Green–Tao Theorem (arXiv 2004; Annals 2008)

The primes contain arbitrarily long arithmetic progressions.

Examples:

- 3, 5, 7
- 5, 11, 17, 23, 29
- 7, 37, 67, 97, 127, 157
- Longest known: 26 terms
Green–Tao Theorem (2008)
The primes contain arbitrarily long arithmetic progressions (AP).

Szemerédi’s Theorem (1975)
Every subset of \(\mathbb{N} \) with positive density contains arbitrarily long APs.

(upper) density of \(A \subset \mathbb{N} \) is \(\limsup_{N \to \infty} \frac{|A \cap [N]|}{N} \)

\([N] := \{1, 2, \ldots, N\}\)

\(P = \text{prime numbers}\)

Prime number theorem: \(\frac{|P \cap [N]|}{N} \sim \frac{1}{\log N} \)
Proof strategy of Green–Tao theorem

$P =$ prime numbers, $Q =$ “almost primes”

$P \subseteq Q$ with relative positive density, i.e., $\frac{|P \cap [N]|}{|Q \cap [N]|} > \delta$
Proof strategy of Green–Tao theorem

\[P = \text{prime numbers, } Q = \text{“almost primes”} \]
\[P \subseteq Q \text{ with relative positive density, i.e., } \frac{|P \cap [N]|}{|Q \cap [N]|} > \delta \]

Step 1:

Relative Szemerédi theorem (informally)

If \(S \subseteq \mathbb{N} \) satisfies certain pseudorandomness conditions, then every subset of \(S \) of positive density contains long APs.

\[P = \text{prime numbers, } Q = \text{“almost primes”} \]
\[P \subseteq Q \text{ with relative positive density, i.e., } \frac{|P \cap [N]|}{|Q \cap [N]|} > \delta \]
Proof strategy of Green–Tao theorem

$P = \text{prime numbers}, \; Q = \text{“almost primes”}$

$P \subseteq Q$ with relative positive density, i.e., \(\frac{|P \cap [N]|}{|Q \cap [N]|} > \delta \)

Step 1: Relative Szemerédi theorem (informally)

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S of positive density contains long APs.

Step 2: Construct a superset of primes that satisfies the conditions.
Relative Szemerédi theorem

Relative Szemerédi theorem (informally)

If $S \subseteq \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S of positive density contains long APs.

What pseudorandomness conditions?

Green–Tao:

1. Linear forms condition
2. Correlation condition
Relative Szemerédi theorem

If $S \subset \mathbb{N}$ satisfies certain pseudorandomness conditions, then every subset of S of positive density contains long APs.

What pseudorandomness conditions?

Green–Tao:
1. Linear forms condition
2. Correlation condition

A natural question (e.g., asked by Green, Gowers, . . .)

Does relative Szemerédi theorem hold with weaker and more natural hypotheses?
Relative Szemerédi theorem

Relative Szemerédi theorem (informally)
If \(S \subset \mathbb{N} \) satisfies certain pseudorandomness conditions, then every subset of \(S \) of positive density contains long APs.

What pseudorandomness conditions?

Green–Tao:
1. Linear forms condition
2. Correlation condition \(\leftarrow \) no longer needed

A natural question (e.g., asked by Green, Gowers, . . .)
Does relative Szemerédi theorem hold with weaker and more natural hypotheses?

Our main result
Yes! A weak linear forms condition suffices.
Szemerédi’s theorem
 Host set: \mathbb{N}

Relative Szemerédi theorem
 Host set: some sparse subset of integers

Conclusion: relatively dense subsets contain long APs
Szemerédi’s theorem

Host set: \(\mathbb{N} \)

Relative Szemerédi theorem

Host set: some sparse subset of integers

Random host set
- Kohayakawa–Łuczak–Rödl ’96
 \[3\text{-AP, } p \gtrsim N^{-1/2} \]
- Conlon–Gowers ’10+
- Schacht ’10+

Pseudorandom host set
- Green–Tao ’08 \(\text{linear forms + correlation} \)
- Conlon–Fox–Z. ’13+ \(\text{linear forms} \)

Conclusion: relatively dense subsets contain long APs
Roth’s theorem

Roth’s theorem (1952)

If \(A \subseteq [N] \) is 3-AP-free, then \(|A| = o(N) \).

\([N] := \{1, 2, \ldots, N\}\)

3-AP = 3-term arithmetic progression

It’ll be easier (and equivalent) to work in \(\mathbb{Z}_N := \mathbb{Z}/N\mathbb{Z} \).
Proof of Roth’s theorem

Roth’s theorem (1952)
If \(A \subseteq \mathbb{Z}_N \) is 3-AP-free, then \(|A| = o(N) \).

Given \(A \), construct tripartite graph \(G_A \) with vertex sets \(X = Y = Z = \mathbb{Z}_N \).
Proof of Roth’s theorem

Roth’s theorem (1952)
If \(A \subseteq \mathbb{Z}_N \) is 3-AP-free, then \(|A| = o(N)|.

Given \(A \), construct tripartite graph \(G_A \) with vertex sets \(X = Y = Z = \mathbb{Z}_N \).

\(G_A \)
\(x \sim y \) iff
\(2x + y \in A \)

No triangles? Only triangles \(\iff \) trivial 3-APs with diff 0.

Every edge of the graph is contained in exactly one triangle (the one with \(x + y + z = 0 \)).
Proof of Roth’s theorem

Roth’s theorem (1952)

If \(A \subseteq \mathbb{Z}_N \) is 3-AP-free, then \(|A| = o(N) \).

Given \(A \), construct tripartite graph \(G_A \) with vertex sets \(X = Y = Z = \mathbb{Z}_N \).

Given \(A \), construct tripartite graph \(G_A \) with vertex sets \(X = Y = Z = \mathbb{Z}_N \).

Every edge of the graph is contained in exactly one triangle (the one with \(x + y + z = 0 \)).
Proof of Roth’s theorem

Roth’s theorem (1952)

If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Given A, construct tripartite graph G_A with vertex sets $X = Y = Z = \mathbb{Z}_N$.

Triangle xyz in $G_A \iff 2x + y, x - z, -y - 2z \in A$

Every edge of the graph is contained in exactly one triangle (the one with $x + y + z = 0$).
Proof of Roth’s theorem

Roth’s theorem (1952)

If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Given A, construct tripartite graph G_A with vertex sets $X = Y = Z = \mathbb{Z}_N$.

- $x \sim y$ iff $2x + y \in A$
- $x \sim z$ iff $x - z \in A$
- $y \sim z$ iff $-y - 2z \in A$
Proof of Roth’s theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Given A, construct tripartite graph G_A with vertex sets $X = Y = Z = \mathbb{Z}_N$.

Triangle xyz in $G_A \iff 2x + y, x - z, -y - 2z \in A$
Proof of Roth’s theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Given A, construct tripartite graph G_A with vertex sets
$X = Y = Z = \mathbb{Z}_N$.

Triangle xyz in G_A \iff
$2x + y, x - z, -y - 2z \in A$

It’s a 3-AP with diff $-x - y - z$
Proof of Roth’s theorem

Roth’s theorem (1952)
If \(A \subseteq \mathbb{Z}_N \) is 3-AP-free, then \(|A| = o(N) \).

Given \(A \), construct tripartite graph \(G_A \) with vertex sets
\(X = Y = Z = \mathbb{Z}_N \).

Triangle \(xyz \) in \(G_A \) \(\iff \)
\(2x + y, \ x - z, \ -y - 2z \in A \)
It’s a 3-AP with diff \(-x - y - z \)

No triangles?
Proof of Roth’s theorem

Roth’s theorem (1952)
If \(A \subseteq \mathbb{Z}_N \) is 3-AP-free, then \(|A| = o(N) \).

Given \(A \), construct tripartite graph \(G_A \) with vertex sets \(X = Y = Z = \mathbb{Z}_N \).

Triangle \(xyz \) in \(G_A \) \iff
\[
2x + y, \ x - z, \ -y - 2z \in A
\]

It’s a 3-AP with diff \(-x - y - z\)

No triangles? Only triangles \(\leftrightarrow \) trivial 3-APs with diff 0.
Proof of Roth’s theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Given A, construct tripartite graph G_A with vertex sets $X = Y = Z = \mathbb{Z}_N$.

Triangle xyz in $G_A \iff 2x + y, x - z, -y - 2z \in A$
It’s a 3-AP with diff $-x - y - z$

No triangles? Only triangles \leftrightarrow trivial 3-APs with diff 0.
Every edge of the graph is contained in exactly one triangle (the one with $x + y + z = 0$).
Proof of Roth’s theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Constructed a graph with
- $3N$ vertices
- $3N|A|$ edges
- every edge in exactly one triangle

Theorem (Ruzsa & Szemerédi ‘76)
If every edge in a graph $G = (V, E)$ is contained in exactly one triangle, then $|E| = o(|V|^2)$.

(a consequence of the triangle removal lemma)
Proof of Roth’s theorem

Roth’s theorem (1952)

If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Construct a graph with
- $3N$ vertices
- $3N|A|$ edges
- every edge in exactly one triangle

Theorem (Ruzsa & Szemerédi ’76)

If every edge in a graph $G = (V, E)$ is contained in exactly one triangle, then $|E| = o(|V|^2)$.

(a consequence of the triangle removal lemma)

So $3N|A| = o(N^2)$. Thus $|A| = o(N)$.
Relative Roth theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Relative Roth theorem (Conlon, Fox, Z.)
If $S \subseteq \mathbb{Z}_N$ satisfies the 3-linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A| = o(|S|)$.

3-linear forms condition:
G_S has asymptotically the expected number of embeddings of $K_{2,2,2}$, $K_{2,2,2}$ & its subgraphs (compared to random graph of same density), e.g.,
Relative Roth theorem

Roth’s theorem (1952)
If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Relative Roth theorem (Conlon, Fox, Z.)
If $S \subseteq \mathbb{Z}_N$ satisfies the 3-linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A| = o(|S|)$.

\[G_S \]

$x \sim y$ iff $2x + y \in S$

$x \sim z$ iff $x - z \in S$

$y \sim z$ iff $-y - 2z \in S$
Relative Roth theorem

Roth’s theorem (1952)

If $A \subseteq \mathbb{Z}_N$ is 3-AP-free, then $|A| = o(N)$.

Relative Roth theorem (Conlon, Fox, Z.)

If $S \subseteq \mathbb{Z}_N$ satisfies the 3-linear forms condition, and $A \subseteq S$ is 3-AP-free, then $|A| = o(|S|)$.

3-linear forms condition:

G_S has asymp. the expected number of embeddings of $K_{2,2,2}$ & its subgraphs (compared to random graph of same density)
Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density graphs, many quasirandomness conditions are equivalent, one of which is having the correct C_4 count

\[
\begin{array}{c}
\text{2-blow-up} \\
\rightarrow
\end{array}
\]

(\text{not shown})
Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density graphs, many quasirandomness conditions are equivalent, one of which is having the correct C_4 count

\[
\begin{align*}
\text{2-blow-up} & \quad \rightarrow \\
\text{\hspace{2cm}} & \quad \rightarrow \\
\end{align*}
\]

In sparse graphs, the CGW equivalences do not hold.
Analogy with quasirandom graphs

Chung-Graham-Wilson ’89 showed that in constant edge-density graphs, many quasirandomness conditions are equivalent, one of which is having the correct C_4 count

\[
\begin{array}{c}
\text{2-blow-up} \\
\end{array}
\]

In sparse graphs, the CGW equivalences do not hold.

Our results can be viewed as saying that:
Many extremal and Ramsey results about H (e.g., $H = K_3$) in sparse graphs hold if there is a host graph that behaves pseudorandomly with respect to counts of the 2-blow-up of H.

\[
\begin{array}{c}
\text{2-blow-up} \\
\end{array}
\]
Relative Szemerédi theorem (Conlon, Fox, Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z}_N$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A| = o(|S|)$.

4-linear forms condition: correct count of the 2-blow-up of the simplex $K(3)^4$ (as well as its subgraphs)
Relative Szemerédi theorem (Conlon, Fox, Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z}_N$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A| = o(|S|)$.

$k = 4$: build a 4-partite 3-uniform hypergraph

Vertex sets $W = X = Y = Z = \mathbb{Z}_N$

- $xyz \in E \iff 3w + 2x + y \in S$
- $wxz \in E \iff 2w + x - z \in S$
- $wyz \in E \iff w - y - 2z \in S$
- $xyz \in E \iff -x - 2y - 3z \in S$

common diff: $-w - x - y - z$
Relative Szemerédi theorem (Conlon, Fox, Z.)

Fix $k \geq 3$. If $S \subseteq \mathbb{Z}_N$ satisfies the k-linear forms condition, and $A \subseteq S$ is k-AP-free, then $|A| = o(|S|)$.

$k = 4$: build a 4-partite 3-uniform hypergraph

Vertex sets $W = X = Y = Z = \mathbb{Z}_N$

- $xyz \in E \iff 3w + 2x + y \in S$
- $wxz \in E \iff 2w + x - z \in S$
- $wyz \in E \iff w - y - 2z \in S$
- $xyz \in E \iff -x - 2y - 3z \in S$

common diff: $-w - x - y - z$

4-linear forms condition: correct count of the 2-blow-up of the simplex $K_4^{(3)}$ (as well as its subgraphs)
Two approaches

Conlon, Fox, Z.
A relative Szemerédi theorem
20pp

Z.
An arithmetic transference proof of a relative Szemerédi thm
6pp
Two approaches

Conlon, Fox, Z.
A relative Szemerédi theorem
20pp
 - Transfer hypergraph removal lemma

Z.
An arithmetic transference proof of a relative Szemerédi thm
6pp
Two approaches

Conlon, Fox, Z.

A relative Szemerédi theorem
20pp

- Transfer hypergraph removal lemma

Z.

An arithmetic transference proof of a relative Szemerédi thm
6pp

- Transfer Szemerédi’s theorem
Two approaches

Conlon, Fox, Z.
A relative Szemerédi theorem
20pp
- Transfer hypergraph removal lemma

Z.
An arithmetic transference proof of a relative Szemerédi thm
6pp
- Transfer Szemerédi’s theorem
Roth’s theorem: from one 3-AP to many 3-APs

Roth’s theorem

∀δ > 0, for sufficiently large N,
every \(A \subset \mathbb{Z}_N \) with \(|A| \geq \delta N \) contains a 3-AP.
Roth’s theorem: from one 3-AP to many 3-APs

Roth’s theorem
\[\forall \delta > 0, \text{ for sufficiently large } N, \]
every \(A \subset \mathbb{Z}_N \) with \(|A| \geq \delta N \) contains a 3-AP.

By an averaging argument (Varnavides), we get many 3-APs:

Roth’s theorem (counting version)
\[\forall \delta > 0 \exists c > 0 \text{ so that for sufficiently large } N, \]
every \(A \subset \mathbb{Z}_N \) with \(|A| \geq \delta N \) contains at least \(cN^2 \) many 3-APs.
Transference

Start with

\[(\text{sparse}) \quad A \subset S \subset \mathbb{Z}_N, \quad |A| \geq \delta |S|\]
Transference

Start with

\[(\text{sparse})\quad A \subset S \subset \mathbb{Z}_N, \quad |A| \geq \delta |S|\]

One can find a dense model \tilde{A} for A:

\[(\text{dense})\quad \tilde{A} \subset \mathbb{Z}_N, \quad \frac{|\tilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta\]
Transference

Start with

\[A \subset S \subset \mathbb{Z}_N, \quad |A| \geq \delta |S| \]

One can find a dense model \(\tilde{A} \) for \(A \):

\[\tilde{A} \subset \mathbb{Z}_N, \quad \frac{|	ilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta \]

Counting lemma will tell us that

\[\left(\frac{N}{|S|} \right)^3 |\{3-APs \text{ in } A\}| \approx |\{3-APs \text{ in } \tilde{A}\}| \]
Transference

Start with

\[(\text{sparse}) \quad A \subset S \subset \mathbb{Z}_N, \quad |A| \geq \delta |S|\]

One can find a dense model \tilde{A} for A:

\[(\text{dense}) \quad \tilde{A} \subset \mathbb{Z}_N, \quad \frac{|\tilde{A}|}{N} \approx \frac{|A|}{|S|} \geq \delta\]

Counting lemma will tell us that

\[
\left(\frac{N}{|S|}\right)^3 |\{3-\text{APs in } A\}| \approx |\{3-\text{APs in } \tilde{A}\}| \\
\geq cN^2 \quad \text{[By Roth’s Theorem]}
\]

\implies relative Roth theorem
Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that for sufficiently large N, every \(A \subset \mathbb{Z}_N \) with \(|A| \geq \delta N\) contains at least \(cN^2 \) many 3-APs.
Roth’s theorem (counting version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every $A \subset \mathbb{Z}_N$ with $|A| \geq \delta N$ contains at least cN^2 many 3-APs.

Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every $f: \mathbb{Z}_N \rightarrow [0, 1]$ with $\mathbb{E}f \geq \delta$ satisfies

$$AP_3(f) := \mathbb{E}_{x, d \in \mathbb{Z}_N}[f(x)f(x + d)f(x + 2d)] \geq c.$$
Roth's theorem (weighted version)

\(\forall \delta > 0 \ \exists c > 0 \) so that for sufficiently large \(N \), every \(f : \mathbb{Z}_N \rightarrow [0, 1] \) with \(\mathbb{E}f \geq \delta \) satisfies

\[
AP_3(f) := \mathbb{E}_{x, d \in \mathbb{Z}_N} [f(x)f(x + d)f(x + 2d)] \geq c.
\]

Sparse setting: some sparse host set \(S \subset \mathbb{Z}_N \).
More generally, use a normalized measure:

\[
\nu : \mathbb{Z}_N \rightarrow [0, \infty) \quad \text{with} \quad \mathbb{E}\nu = 1.
\]

E.g., \(\nu = \frac{N}{|S|} 1_S \) normalized indicator function.
Roth’s theorem (weighted version)

\(\forall \delta > 0 \exists c > 0 \) so that for sufficiently large \(N \), every \(f : \mathbb{Z}_N \rightarrow [0, 1] \) with \(\mathbb{E}f \geq \delta \) satisfies

\[
AP_3(f) := \mathbb{E}_{x,d \in \mathbb{Z}_N} [f(x)f(x + d)f(x + 2d)] \geq c.
\]

Sparse setting: some sparse host set \(S \subset \mathbb{Z}_N \).

More generally, use a normalized measure:

\[\nu : \mathbb{Z}_N \rightarrow [0, \infty) \quad \text{with} \quad \mathbb{E}\nu = 1. \]

E.g., \(\nu = \frac{N}{|S|}1_S \) normalized indicator function.

The subset \(A \subset S \) with \(|A| \geq \delta |S| \) corresponds to

\[f : \mathbb{Z}_N \rightarrow [0, \infty), \quad \mathbb{E}f \geq \delta \]

and \(f \) majorized by \(\nu \), meaning that \(f(x) \leq \nu(x) \ \forall x \in \mathbb{Z}_N \).
Roth’s theorem (weighted version)

∀δ > 0 ∃c > 0 so that for sufficiently large N,
every $f : \mathbb{Z}_N \rightarrow [0, 1]$ with $\mathbb{E}f \geq \delta$ satisfies $AP_3(f) \geq c$.

Relative Roth theorem (Conlon, Fox, Z.)

∀δ > 0 ∃c > 0 so that for sufficiently large N, if

- $\nu : \mathbb{Z}_N \rightarrow [0, \infty)$ satisfies the 3-linear forms condition, and
- $f : \mathbb{Z}_N \rightarrow [0, \infty)$ majorized by ν and $\mathbb{E}f \geq \delta$, then

$$AP_3(f) \geq c.$$

Recall $AP_3(f) = \mathbb{E}_{x,d \in \mathbb{Z}_N}[f(x)f(x + d)f(x + 2d)]$
3-linear forms condition

The density of $K_{2,2,2}$ in $\mathbb{Z}_N 	imes \mathbb{Z}_N 	imes \mathbb{Z}_N$ is

\[\nu(2x + y) \nu(x - z) \nu(-y - 2z) \]
Relative Roth theorem (Conlon, Fox, Z.)

\(\forall \delta > 0 \exists c > 0 \) so that for sufficiently large \(N \), if

- \(\nu : \mathbb{Z}_N \rightarrow [0, \infty) \) satisfies the 3-linear forms condition, and
- \(f : \mathbb{Z}_N \rightarrow [0, \infty) \) majorized by \(\nu \) and \(\mathbb{E} f \geq \delta \), then

\[AP_3(f) \geq c. \]

\(\nu : \mathbb{Z}_N \rightarrow [0, \infty) \) satisfies the 3-linear forms condition if

\[
\mathbb{E} \left[\nu(2x + y)\nu(2x' + y)\nu(2x + y')\nu(2x' + y') \cdot \nu(x - z)\nu(x' - z)\nu(x - z')\nu(x' - z') \cdot \nu(-y - 2z)\nu(-y' - 2z)\nu(-y - 2z')\nu(-y' - 2z') \right] = 1 + o(1)
\]

as well as if any subset of the 12 factors were deleted.
Transference

Start with $f \leq \nu$

(sparse) $f : \mathbb{Z}_N \to [0, \infty)$ $\mathbb{E}f \geq \delta$
Transference

Start with \(f \leq \nu \)

(sparse) \(f : \mathbb{Z}_N \rightarrow [0, \infty) \quad \mathbb{E}f \geq \delta \)

Dense model theorem: one can approximate \(f \) (in cut norm) by

(dense) \(\tilde{f} : \mathbb{Z}_N \rightarrow [0, 1] \quad \mathbb{E}\tilde{f} = \mathbb{E}f \)

Counting lemma implies

\[\text{AP}_3(f) \approx \text{AP}_3(\tilde{f}) \geq c \quad \text{[By Roth's Thm (weighted version)]} \]

\(\Rightarrow \) relative Roth theorem
Start with $f \leq \nu$

(sparse) $f : \mathbb{Z}_N \to [0, \infty)$ \hspace{1cm} $\mathbb{E}f \geq \delta$

Dense model theorem: one can approximate f (in cut norm) by

(dense) $\tilde{f} : \mathbb{Z}_N \to [0, 1]$ \hspace{1cm} $\mathbb{E}\tilde{f} = \mathbb{E}f$

Counting lemma implies

$AP_3(f) \approx AP_3(\tilde{f})$
Transference

Start with $f \leq \nu$

(sparse) $f : \mathbb{Z}_N \to [0, \infty)$ $\mathbb{E}f \geq \delta$

Dense model theorem: one can approximate f (in cut norm) by

(dense) $\tilde{f} : \mathbb{Z}_N \to [0, 1]$ $\mathbb{E}\tilde{f} = \mathbb{E}f$

Counting lemma implies

$AP_3(f) \approx AP_3(\tilde{f}) \geq c$ [By Roth’s Thm (weighted version)]

\Rightarrow relative Roth theorem
Transference

Start with $f \leq \nu$

(sparse) $f : \mathbb{Z}_N \rightarrow [0, \infty)$ $\mathbb{E}f \geq \delta$

Dense model theorem: one can approximate f (in cut norm) by

(dense) $\tilde{f} : \mathbb{Z}_N \rightarrow [0, 1]$ $\mathbb{E}\tilde{f} = \mathbb{E}f$

Counting lemma implies

$AP_3(f) \approx AP_3(\tilde{f}) \geq c$ [By Roth’s Thm (weighted version)]

\implies relative Roth theorem
In what sense does $0 \leq \tilde{f} \leq 1$ approximate $0 \leq f \leq \nu$?
In what sense does $0 \leq \tilde{f} \leq 1$ approximate $0 \leq f \leq \nu$?

- Previous approach (Green–Tao): Gowers uniformity norm
- Our approach: cut norm (aka discrepancy)
In what sense does $0 \leq \tilde{f} \leq 1$ approximate $0 \leq f \leq \nu$?

- Previous approach (Green–Tao): Gowers uniformity norm
- Our approach: cut norm (aka discrepancy)

Using cut norm:

- Cheaper dense model theorem
- Trickier counting lemma
Cut norm for weighted bipartite graph (Frieze-Kannan):

\[g : X \times Y \rightarrow \mathbb{R} \]

\[\|g\|_{\square} := \frac{1}{|X||Y|} \sup_{A \subseteq X, B \subseteq Y} \left| \sum_{x \in A, y \in B} g(x, y) \right| \]
Cut norm for weighted bipartite graph (Frieze-Kannan):

\[g: X \times Y \rightarrow \mathbb{R} \]

\[\|g\|_{\square} := \frac{1}{|X||Y|} \sup_{A \subset X, B \subset Y} \left| \sum_{x \in A \atop y \in B} g(x, y) \right| \]

Cut norm for \(\mathbb{Z}_N \): \(f: \mathbb{Z}_N \rightarrow \mathbb{R} \)

\[\|f\|_{\square} := \frac{1}{N^2} \sup_{A, B \subset \mathbb{Z}_N} \left| \sum_{x \in A \atop y \in B} f(x + y) \right| \]
Cut norm for weighted bipartite graph (Frieze-Kannan):
\[g : X \times Y \rightarrow \mathbb{R} \]
\[
\|g\|_\square := \frac{1}{|X||Y|} \sup_{A \subseteq X, B \subseteq Y} \left| \sum_{x \in A, y \in B} g(x, y) \right|
\]

Cut norm for \(\mathbb{Z}_N \):
\[f : \mathbb{Z}_N \rightarrow \mathbb{R} \]
\[
\|f\|_\square := \frac{1}{N^2} \sup_{A, B \subseteq \mathbb{Z}_N} \left| \sum_{x \in A, y \in B} f(x + y) \right|
\]

Dense model theorem
Assume \(\nu : \mathbb{Z}_N \rightarrow [0, \infty) \) satisfies \(\|\nu - 1\|_\square = o(1) \).
Then \(\forall \ 0 \leq f \leq \nu, \exists \tilde{f} : \mathbb{Z}_N \rightarrow [0, 1] \) s.t. \(\|f - \tilde{f}\|_\square = o(1) \).
Dense model theorem

Assume $\nu: \mathbb{Z}_N \to [0, \infty)$ satisfies $\|\nu - 1\|_{\square} = o(1)$.
Then $\forall \ 0 \leq f \leq \nu$, $\exists \tilde{f}: \mathbb{Z}_N \to [0, 1]$ s.t. $\|f - \tilde{f}\|_{\square} = o(1)$.

Proof of the general dense model theorem
1. Regularity-type energy-increment argument (Green–Tao, Tao–Ziegler)
2. Separating hyperplane theorem / minimax theorem + Weierstrass polynomial approximation theorem (Gowers & Reingold–Trevisan–Tulsiani–Vadhan)
Specialized/simplified for the cut norm on \mathbb{Z}_N.

Dense model theorem

Assume $\nu: \mathbb{Z}_N \to [0, \infty)$ satisfies $\|\nu - 1\|_\square = o(1)$. Then $\forall 0 \leq f \leq \nu$, $\exists \tilde{f}: \mathbb{Z}_N \to [0, 1]$ s.t. $\|f - \tilde{f}\|_\square = o(1)$.

Proof of the general dense model theorem

1. Regularity-type energy-increment argument
 (Green–Tao, Tao–Ziegler)

2. Separating hyperplane theorem / minimax theorem
 + Weierstrass polynomial approximation theorem
 (Gowers & Reingold–Trevisan–Tulsiani–Vadhan)
Dense model theorem

<table>
<thead>
<tr>
<th>Dense model theorem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assume $\nu: \mathbb{Z}N \to [0, \infty)$ satisfies $|\nu - 1|{\square} = o(1)$.</td>
</tr>
<tr>
<td>Then $\forall 0 \leq f \leq \nu$, $\exists \tilde{f}: \mathbb{Z}N \to [0, 1]$ s.t. $|f - \tilde{f}|{\square} = o(1)$.</td>
</tr>
</tbody>
</table>

Proof of the general dense model theorem

1. Regularity-type energy-increment argument
 (Green–Tao, Tao–Ziegler)
2. Separating hyperplane theorem / minimax theorem
 + Weierstrass polynomial approximation theorem
 (Gowers & Reingold–Trevisan–Tulsiani–Vadhan)

Specialized/simplified for the cut norm on \mathbb{Z}_N (Z.)
Higher cut norms

For 4-AP

3-uniform weighted hypergraph $g : X \times Y \times Z \rightarrow \mathbb{R}$, define

$$\|g\|_{\Box} = \frac{1}{|X||Y||Z|} \sup_{A \subset Y \times Z} \sup_{B \subset X \times Z} \sup_{C \subset X \times Y} \left| \sum_{\substack{x \in X, y \in Y, z \in Z \ (y,z) \in A \ (x,z) \in B \ (x,y) \in C}} g(x, y, z) \right|.$$

i.e., supremum taken over all 2-graphs between X, Y, Z
Transference

Start with $f \leq \nu$

\[(\text{sparse}) \quad f : \mathbb{Z}_N \to [0, \infty) \quad \mathbb{E}f \geq \delta]\]

Dense model theorem: one can approximate f (in cut norm) by

\[(\text{dense}) \quad \tilde{f} : \mathbb{Z}_N \to [0, 1] \quad \mathbb{E}\tilde{f} = \mathbb{E}f\]

Counting lemma implies

\[AP_3(f) \approx AP_3(\tilde{f}) \geq c \quad [\text{By Roth’s Thm (weighted version)}]\]

\implies relative Roth theorem
Transference

Start with $f \leq \nu$

(sparse) \quad f : \mathbb{Z}_N \rightarrow [0, \infty) \quad \mathbb{E}f \geq \delta

Dense model theorem: one can approximate f (in cut norm) by

(dense) \quad \tilde{f} : \mathbb{Z}_N \rightarrow [0, 1] \quad \mathbb{E}\tilde{f} = \mathbb{E}f

Counting lemma implies

$AP_3(f) \approx AP_3(\tilde{f}) \geq c \quad [\text{By Roth's Thm (weighted version)}]$

\implies relative Roth theorem
Counting lemma

Weighted graphs $g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R}$

Triangle density $t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)]$

Triangle counting lemma (dense setting)

Assume $0 \leq g, \tilde{g} \leq 1$. If $\|g - \tilde{g}\|_\square \leq \epsilon$, then

$$t(g) = t(\tilde{g}) + O(\epsilon).$$
Counting lemma

Weighted graphs \(g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R} \)

Triangle density \(t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)] \)

Triangle counting lemma (dense setting)
Assume \(0 \leq g, \tilde{g} \leq 1 \). If \(\|g - \tilde{g}\|_\square \leq \epsilon \), then

\[
t(g) = t(\tilde{g}) + O(\epsilon).
\]

\[
|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))1_A(x)1_B(y)]| \leq \epsilon \quad \forall A \subseteq X, B \subseteq Y
\]
Counting lemma

Weighted graphs \(g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R} \)

Triangle density \(t(g) := \mathbb{E}_{x,y,z} [g(x,y)g(x,z)g(y,z)] \)

Triangle counting lemma (dense setting)

Assume \(0 \leq g, \tilde{g} \leq 1 \). If \(\|g - \tilde{g}\|_\square \leq \epsilon \), then

\[
t(g) = t(\tilde{g}) + O(\epsilon).
\]

\[
|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a : X \to [0,1], \ b : Y \to [0,1]
\]
Counting lemma

Weighted graphs $g, \tilde{g}: (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R}$

Triangle density $t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)]$

Triangle counting lemma (dense setting)

Assume $0 \leq g, \tilde{g} \leq 1$. If $\|g - \tilde{g}\|_\Box \leq \epsilon$, then

$$t(g) = t(\tilde{g}) + O(\epsilon).$$

$$|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a: X \to [0, 1], \ b: Y \to [0, 1]$$

$$t(g) = \mathbb{E}[g(x,y)g(x,z)g(y,z)]$$
Counting lemma

Weighted graphs $g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R}$

Triangle density $t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)]$

Triangle counting lemma (dense setting)

Assume $0 \leq g, \tilde{g} \leq 1$. If $\|g - \tilde{g}\|_{\square} \leq \epsilon$, then

$$t(g) = t(\tilde{g}) + O(\epsilon).$$

$$|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a: X \to [0,1], b: Y \to [0,1]$$

$$t(g) = \mathbb{E}[g(x,y)g(x,z)g(y,z)]$$

$$= \mathbb{E}[\tilde{g}(x,y)g(x,z)g(y,z)] + O(\epsilon)$$
Counting lemma

Weighted graphs $g, \tilde{g}: (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R}$

Triangle density $t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)]$

Triangle counting lemma (dense setting)

Assume $0 \leq g, \tilde{g} \leq 1$. If $\|g - \tilde{g}\|_\square \leq \epsilon$, then

$$t(g) = t(\tilde{g}) + O(\epsilon).$$

$$|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a: X \to [0,1], \ b: Y \to [0,1]$$

$$t(g) = \mathbb{E}[g(x,y)g(x,z)g(y,z)]$$

$$= \mathbb{E}[\tilde{g}(x,y)g(x,z)g(y,z)] + O(\epsilon)$$

$$= \mathbb{E}[\tilde{g}(x,y)\tilde{g}(x,z)g(y,z)] + O(\epsilon)$$
Counting lemma

Weighted graphs $g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R}$

Triangle density $t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)]$

Triangle counting lemma (dense setting)

Assume $0 \leq g, \tilde{g} \leq 1$. If $\|g - \tilde{g}\|_\square \leq \epsilon$, then

$$t(g) = t(\tilde{g}) + O(\epsilon).$$

$$|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a : X \to [0,1], \ b : Y \to [0,1]$$

\[
t(g) = \mathbb{E}[g(x,y)g(x,z)g(y,z)] \\
= \mathbb{E}[\tilde{g}(x,y)g(x,z)g(y,z)] + O(\epsilon) \\
= \mathbb{E}[\tilde{g}(x,y)\tilde{g}(x,z)g(y,z)] + O(\epsilon) \\
= \mathbb{E}[\tilde{g}(x,y)\tilde{g}(x,z)\tilde{g}(y,z)] + O(\epsilon) = t(\tilde{g}) + O(\epsilon)
\]

This argument doesn't work in the sparse setting (g unbounded)
Counting lemma

Weighted graphs \(g, \tilde{g} : (X \times Y) \cup (X \times Z) \cup (Y \times Z) \to \mathbb{R} \)

Triangle density \(t(g) := \mathbb{E}_{x,y,z}[g(x,y)g(x,z)g(y,z)] \)

Triangle counting lemma (dense setting)

Assume \(0 \leq g, \tilde{g} \leq 1 \). If \(\|g - \tilde{g}\|_\square \leq \epsilon \), then

\[
t(g) = t(\tilde{g}) + O(\epsilon).
\]

\[
|\mathbb{E}[(g(x,y) - \tilde{g}(x,y))a(x)b(y)]| \leq \epsilon \quad \forall a : X \to [0,1], \ b : Y \to [0,1]
\]

\[
t(g) = \mathbb{E}[g(x,y)g(x,z)g(y,z)]
= \mathbb{E}[\tilde{g}(x,y)g(x,z)g(y,z)] + O(\epsilon)
= \mathbb{E}[\tilde{g}(x,y)\tilde{g}(x,z)g(y,z)] + O(\epsilon)
= \mathbb{E}[\tilde{g}(x,y)\tilde{g}(x,z)\tilde{g}(y,z)] + O(\epsilon) = t(\tilde{g}) + O(\epsilon)
\]

This argument doesn’t work in the sparse setting (\(g \) unbounded)
Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that ν satisfies the 3-linear forms condition. If $0 \leq g \leq \nu$, $0 \leq \tilde{g} \leq 1$ and $\|g - \tilde{g}\|_{\Box} = o(1)$, then

$$t(g) = t(\tilde{g}) + o(1)$$

Recall $t(g) = \mathbb{E}[g(x, y)g(x, z)g(y, z)]$
Sparse counting lemma

Sparse triangle counting lemma (Conlon, Fox, Z.)

Assume that υ satisfies the 3-linear forms condition. If 0 ≤ g ≤ υ, 0 ≤ ˜g ≤ 1 and ∥g − ˜g∥□ = o(1), then

\[t(g) = t(\tilde{g}) + o(1) \]

Recall \(t(g) = \mathbb{E}[g(x, y)g(x, z)g(y, z)] \)

Proof ingredients

1. Cauchy-Schwarz
2. Densification
3. Apply cut norm/discrepancy (as in dense case)
Densification

\[\mathbb{E}[g(x, z)g(y, z)g(x, z')g(y, z')] \]

Made \(X \times Y \) dense. Now repeat for \(X \times Z \) & \(Y \times Z \).

Reduce to dense setting.
Densification

\[\mathbb{E}[g(x, z)g(y, z)g(x, z')g(y, z')] \]

Set \(g'(x, y) := \mathbb{E}_{z'}[g(x, z')g(y, z')] \), i.e., codegrees

\(g'(x, y) \lesssim 1 \) for almost all \((x, y)\)
Densification

\[\mathbb{E}[g(x, z)g(y, z)g(x, z')g(y, z')] = \mathbb{E}[g'(x, y)g(x, z)g(y, z)] \]

Set \(g'(x, y) := \mathbb{E}_z'[g(x, z')g(y, z')] \), i.e., codegrees

\(g'(x, y) \lesssim 1 \) for almost all \((x, y)\)
Densification

\[
\mathbb{E}[g(x, z)g(y, z)g(x, z')g(y, z')] = \mathbb{E}[g'(x, y)g(x, z)g(y, z)]
\]

Set \(g'(x, y) := \mathbb{E}_z'[g(x, z')g(y, z')] \), i.e., codegrees

\[
g'(x, y) \lesssim 1 \text{ for almost all } (x, y)
\]

Made \(X \times Y \) dense. Now repeat for \(X \times Z \) & \(Y \times Z \).
Reduce to dense setting.
Transference

Start with \(f \leq \nu \)

(sparse) \(f : \mathbb{Z}_N \rightarrow [0, \infty) \quad \mathbb{E}f \geq \delta \)

Dense model theorem: one can approximate \(f \) (in cut norm) by

(dense) \(\tilde{f} : \mathbb{Z}_N \rightarrow [0, 1] \quad \mathbb{E}\tilde{f} = \mathbb{E}f \)

Counting lemma implies

\[AP_3(f) \approx AP_3(\tilde{f}) \geq c \quad [\text{By Roth's Thm (weighted version)}] \]

\[\implies \text{relative Roth theorem} \]
Coming Soon

The Green-Tao theorem: an exposition
A gentle exposition giving a complete & self-contained proof of the Green-Tao theorem (assuming Szemerédi’s theorem)

~ 25 pages

THANK YOU!