Colouring graphs with no odd holes

Paul Seymour (Princeton)
joint with Alex Scott (Oxford)
Chromatic number $\chi(G)$: minimum number of colours needed to colour G.
Chromatic number $\chi(G)$: minimum number of colours needed to colour G.

Clique number $\omega(G)$: size of largest clique in G.
Theorem (Tutte, 1948)

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.
Theorem (Tutte, 1948)

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of G which is a cycle of length > 3.
Theorem (Tutte, 1948)

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of G which is a cycle of length > 3.

Antihole: induced subgraph of G which is the complement of a cycle of length > 3.
Theorem (Tutte, 1948)

There are graphs G with \(\omega(G) = 2 \) and \(\chi(G) \) arbitrarily large.

Hole: induced subgraph of \(G \) which is a cycle of length \(> 3 \).

Anti-hole: induced subgraph of \(G \) which is the complement of a cycle of length \(> 3 \).

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then \(\chi(G) = \omega(G) \).
Theorem (Tutte, 1948)

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of G which is a cycle of length > 3.
Antihole: induced subgraph of G which is the complement of a cycle of length > 3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then $\chi(G) = \omega(G)$.

What happens in between?
Theorem (Tutte, 1948)

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of G which is a cycle of length > 3.
Antihole: induced subgraph of G which is the complement of a cycle of length > 3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then $\chi(G) = \omega(G)$.

What happens in between?

Conjecture (Gyárfás, 1985)

If G has no odd holes then $\chi(G)$ is bounded by a function of $\omega(G)$.
Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.
Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010)

If G has no odd holes and $\omega(G) = 3$ then $\chi(G) \leq 4$.
Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010)

If G has no odd holes and $\omega(G) = 3$ then $\chi(G) \leq 4$.

Theorem (Scott, S., August 2014)

If G has no odd holes then $\chi(G) \leq 2^{3\omega(G)}$.
Cograph: graph not containing a 4-vertex path as an induced subgraph.
Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma

If J is a cograph with $|V(J)| > 1$, then either J or its complement is disconnected.
Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma
If J is a cograph with $|V(J)| > 1$, then either J or its complement is disconnected.

Theorem
Let G be a graph, and let $A, B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.

Then there is a partition X, Y of B such that every $\omega(G)$-clique in B intersects both X and Y.
The proof

Let G be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3\omega(G)}$.
The proof

Let G be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3\omega(G)}$.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole.

Then $\chi(G) \leq 48n^3$.
Levelling in G: Sequence $L_0, L_1, L_2, \ldots, L_k$ of disjoint subsets of $V(G)$ where

- $|L_0| = 1$
- each vertex in L_{i+1} has a neighbour in L_i
- for $j > i + 1$ there are no edges between L_i and L_j.
Levelling in G: Sequence $L_0, L_1, L_2, \ldots, L_k$ of disjoint subsets of $V(G)$ where
- $|L_0| = 1$
- each vertex in L_{i+1} has a neighbour in L_i
- for $j > i + 1$ there are no edges between L_i and L_j.

Enough to show:

Assume
- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G.

Then $\chi(L_k) \leq 24n^3$.
Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

L_i has the **single parent property** if $i < k$ and every vertex in L_i is the unique parent of some vertex.
Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

L_i has the **single parent property** if $i < k$ and every vertex in L_i is the unique parent of some vertex.

L_i has the **parity property** if for all $u, v \in L_i$, all induced paths between them with interior in lower levels have the same parity.
Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

L_i has the **single parent property** if $i < k$ and every vertex in L_i is the unique parent of some vertex.

L_i has the **parity property** if for all $u, v \in L_i$, all induced paths between them with interior in lower levels have the same parity.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the single parent property.

Then $\chi(L_k) \leq 24n^3$.

Spine: Path $S = s_0-s_1-\cdots-s_k$ where

- $s_i \in L_i$ for all i
- s_i is the single parent of s_{i+1} for all $i < k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.
Spine: Path $S = s_0-s_1-\cdots-s_k$ where

- $s_i \in L_i$ for all i
- s_i is the single parent of s_{i+1} for all $i < k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.

$N(S)$ is the set of vertices not in S with a neighbour in S.
Spine: Path $S = s_0-s_1-\cdots-s_k$ where
- $s_i \in L_i$ for all i
- s_i is the single parent of s_{i+1} for all $i < k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.

$N(S)$ is the set of vertices not in S with a neighbour in S.

Type of $v \in N(S) \cap L_i$:
- **Type 1:** i even, v adjacent to s_{i-1} and to no other vertex in S
- **Type 2:** i odd, v adjacent to s_{i-1} and to no other vertex in S
- **Type 3:** i even, v adjacent to s_{i-1}, s_i and to no other vertex in S
- **Type 4:** i odd, v adjacent to s_{i-1}, s_i and to no other vertex in S
- **Type 5:** i even, v adjacent to s_i and to no other vertex in S
- **Type 6:** i odd, v adjacent to s_i and to no other vertex in S.
Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the single parent property
- there is a spine.

Then $\chi(L_k) \leq 4n^3$.
L_i satisfies the **parent rule** if all adjacent $u, v \in L_i$ have the same parents.
L_i satisfies the **parent rule** if all adjacent $u, v \in L_i$ have the same parents.

Theorem

Suppose

- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the single parent property
- there is a spine.

Then L_0, \ldots, L_{k-2} satisfy the parent rule.
Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule.

Then $\chi(L_k) \leq 4n^3$.
Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule
- L_{k-2} is stable.

Then $\chi(L_k) \leq 4n^2$.
Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule.
- L_{k-1} is stable.

Then $\chi(L_k) \leq 2n$.
Let L_0, \ldots, L_t be a levelling in G, where L_t is stable and has the parity property. The graph of jumps on L_t is the graph on L_t, in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.
Let L_0, \ldots, L_t be a levelling in G, where L_t is stable and has the parity property.
The graph of jumps on L_t is the graph on L_t, in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.

Theorem

Suppose that
- G has no odd hole
- L_0, \ldots, L_t is a levelling in G
- L_t has the parity property
- L_0, \ldots, L_{t-1} satisfy the parent rule
- L_t is stable.

Then the graph of jumps on L_t is a cograph.
Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \leq n$
- L_0, \ldots, L_k is a levelling in G
- L_{k-1} has the parity property
- L_{k-1} is stable
- the graph of jumps on L_{k-1} is a cograph.

Then $\chi(L_k) \leq 2n$.
Recall:

Theorem

Let G be a graph, and let $A, B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.

Then there is a partition X, Y of B such that every $\omega(G)$-clique in B intersects both X and Y.