GSE statistics without spin

joint work with

Chris Joyner and Martin Sieber

Sebastian Müller
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries. Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant. Unitary symmetries, e.g. geometrical anti-unitary symmetries: (generalised) time reversal invariance $T (|\phi \rangle + |\psi \rangle) = |\phi \rangle + |\psi \rangle^*$, $\langle T \phi | T \psi \rangle = \langle \phi | \psi \rangle^*$ physically we also need $T^2 |\psi \rangle = c |\psi \rangle$ together with anti-unitarity this implies $T^2 = \pm 1$

Example: $H = \hat{p}^2 / 2m + V(x)$ is invariant under complex conjugation K with $K^2 = 1$
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**.
(Bohigas, Giannoni, Schmit 1984)
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory.
(Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- unitary symmetries, e.g. geometrical
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**.
(Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
 (generalised) time reversal invariance \mathcal{T}
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical

- **anti-unitary** symmetries:

 (generalised) time reversal invariance \mathcal{T}

 $$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^* \mathcal{T}|\psi\rangle + b^* \mathcal{T}|\phi\rangle,$$

 $$\langle \mathcal{T} \psi | \mathcal{T} \phi \rangle = \langle \psi | \phi \rangle^*$$
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**.
(Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
 (generalised) time reversal invariance T

$$T(a|\psi\rangle + b|\phi\rangle) = a^* T|\psi\rangle + b^* T|\phi\rangle, \quad \langle T\psi|T\phi\rangle = \langle \psi|\phi \rangle^*$$

physically we also need $T^2|\psi\rangle = c|\psi\rangle$
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical

- **anti-unitary** symmetries:

 (generalised) time reversal invariance \mathcal{T}

 $$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^*\mathcal{T}|\psi\rangle + b^*\mathcal{T}|\phi\rangle,$$
 $$\langle \mathcal{T}\psi | \mathcal{T}\phi \rangle = \langle \psi | \phi \rangle^*$$

 physically we also need $\mathcal{T}^2|\psi\rangle = c|\psi\rangle$

 together with anti-unitarity this implies $\mathcal{T}^2 = \pm 1$
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**.
(Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
 (generalised) time reversal invariance \mathcal{T}

$$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^* \mathcal{T}|\psi\rangle + b^* \mathcal{T}|\phi\rangle,$$ $\langle \mathcal{T}|\psi\rangle \mathcal{T}|\phi\rangle = \langle \psi|\phi\rangle^*$

physically we also need $\mathcal{T}^2|\psi\rangle = c|\psi\rangle$

Togetherness with anti-unitarity this implies $\mathcal{T}^2 = \pm 1$

Example:
Spectral statistics

Spectra of **chaotic** systems have statistics in agreement with **random matrix theory**. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
 (generalised) time reversal invariance \mathcal{T}

 $$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^*\mathcal{T}|\psi\rangle + b^*\mathcal{T}|\phi\rangle,$$
 $$\langle \mathcal{T}\psi|\mathcal{T}\phi \rangle = \langle \psi|\phi \rangle^*$$

 physically we also need $\mathcal{T}^2|\psi\rangle = c|\psi\rangle$

 together with anti-unitarity this implies $\mathcal{T}^2 = \pm 1$

Example:

$$H = \frac{\hat{p}^2}{2m} + V(x)$$
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:
 (generalised) time reversal invariance \mathcal{T}

$$\mathcal{T}(a|\psi\rangle + b|\phi\rangle) = a^*\mathcal{T}|\psi\rangle + b^*\mathcal{T}|\phi\rangle, \quad \langle \mathcal{T}\psi | \mathcal{T}\phi \rangle = \langle \psi | \phi \rangle^*$$

physically we also need $\mathcal{T}^2|\psi\rangle = c|\psi\rangle$

together with anti-unitarity this implies $\mathcal{T}^2 = \pm 1$

Example:

$H = \frac{\hat{p}^2}{2m} + V(x)$ is invariant under complex conjugation K with $K^2 = 1$
Spectral statistics

Spectra of chaotic systems have statistics in agreement with random matrix theory. (Bohigas, Giannoni, Schmit 1984)

Ensemble depends on symmetries.

Symmetry operators have to leave transition amplitudes $|\langle \phi | \psi \rangle|^2$ invariant.

- **unitary** symmetries, e.g. geometrical
- **anti-unitary** symmetries:

 (generalised) time reversal invariance T

 $$T(a|\psi\rangle + b|\phi\rangle) = a^*T|\psi\rangle + b^*T|\phi\rangle,$$
 $$\langle T|\psi\rangle T|\phi\rangle = \langle |\psi\rangle |\phi\rangle^*$$

 physically we also need $T^2|\psi\rangle = c|\psi\rangle$

 together with anti-unitarity this implies $T^2 = \pm 1$

 Example:

 $$H = \frac{\hat{p}^2}{2m} + V(x)$$

 is invariant under complex conjugation K with $K^2 = 1$
Random matrix ensembles

- Gaussian Unitary Ensemble (no time-reversal invariance)
- Gaussian Orthogonal Ensemble (time-reversal invariance with $T^2 = 1$)
- Gaussian Symplectic Ensemble (time-reversal invariance with $T^2 = -1$)
Random matrix ensembles

(in absence of unitary symmetries)
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^2 = 1$:
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $T^2 = 1$:
 Gaussian Orthogonal Ensemble
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance: Gaussian Unitary Ensemble
- time-reversal invariance with $T^2 = 1$: Gaussian Orthogonal Ensemble
- time-reversal invariance with $T^2 = -1$: Gaussian Symplectic Ensemble
Random matrix ensembles

(in absence of unitary symmetries)

- no time-reversal invariance:
 Gaussian Unitary Ensemble

- time-reversal invariance with $\mathcal{T}^2 = 1$:
 Gaussian Orthogonal Ensemble

- time-reversal invariance with $\mathcal{T}^2 = -1$:
 Gaussian Symplectic Ensemble
Spin systems

E.g.: spin 1/2 system with spin-orbit coupling

\[H = \hat{p}^2/2m + V(x) + \hbar^2/3 \sum_{i=1}^{3} \sigma_i L_i \]

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

commutes with \[T = i \sigma_2 \]

\[K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \]

where \[T^2 = -1 \]

GSE statistics!
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[H = \frac{\hat{p}^2}{2m} + V(x) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i \]
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[
H = \frac{\hat{\rho}^2}{2m} + V(x) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i
\]

\[
\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}
\]
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$H = \frac{\hat{\mathbf{p}}^2}{2m} + V(x) + \hbar \sum_{i=1}^{3} \sigma_i L_i$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

commutes with

$$\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K$$

GSE statistics!
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

$$H = \frac{\hat{p}^2}{2m} + V(x) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i$$

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

commutes with

$$\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K$$

where

$$\mathcal{T}^2 = -1$$
Spin systems

e.g.: spin $\frac{1}{2}$ system with spin-orbit coupling

\[H = \frac{\hat{p}^2}{2m} + V(x) + \frac{\hbar}{2} \sum_{i=1}^{3} \sigma_i L_i \]

\[\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \]

commutes with

\[\mathcal{T} = i\sigma_2 K = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} K \]

where

\[\mathcal{T}^2 = -1 \]

GSE statistics!
Kramer’s degeneracy

for $T_2 = -1$ implies that states $|n\rangle$ and $|T_n\rangle$ are orthogonal and have the same energy. Write the Hamiltonian in a basis $|n\rangle$, $|T_n\rangle$:

$$H_{nm} = (\langle n|H|m\rangle \langle n|H|T_m\rangle \langle T_n|H|m\rangle \langle T_n|H|T_m\rangle)$$

It becomes quaternion-real, i.e.

$$H_{nm} = (\alpha \beta - \beta^* \alpha^*) = a_0 1 + a_1 i \sigma_1 = I + a_2 i \sigma_2 = J + a_3 i \sigma_3 = K$$
for $\mathcal{T}^2 = -1$ implies that states $|n\rangle$ and $|\mathcal{T} n\rangle$ are orthogonal and have same energy
Kramer’s degeneracy

for $T^2 = -1$ implies that states $|n\rangle$ and $|Tn\rangle$ are orthogonal and have same energy.

write Hamiltonian in a basis $|n\rangle$, $|Tn\rangle$:

$$H_{nm} = \left(\langle n| H |m\rangle \langle n| H |Tm\rangle - \langle Tn| H |m\rangle \langle Tn| H |Tm\rangle \right)$$

it becomes quaternion-real, i.e.

$$H_{nm} = \left(\alpha \beta - \beta^* \alpha^* \right) = a_0 I + a_1 i \sigma_1 + a_2 i \sigma_2 + a_3 i \sigma_3 = I + a_2 i \sigma_2 = J + a_3 i \sigma_3 = K$$
Kramer’s degeneracy

for $T^2 = -1$ implies that states $|n\rangle$ and $|Tn\rangle$ are orthogonal and have same energy

write Hamiltonian in a basis $|n\rangle$, $|Tn\rangle$:

$$H_{nm} = \begin{pmatrix}
\langle n|H|m \rangle & \langle n|H|Tm \rangle \\
\langle Tn|H|m \rangle & \langle Tn|H|Tm \rangle
\end{pmatrix}$$
Kramer’s degeneracy

for $T^2 = -1$ implies that states $|n\rangle$ and $|Tn\rangle$ are orthogonal and have same energy

write Hamiltonian in a basis $|n\rangle$, $|Tn\rangle$:

$$H_{nm} = \begin{pmatrix} \langle n|H|m \rangle & \langle n|H|Tm \rangle \\ \langle Tn|H|m \rangle & \langle Tn|H|Tm \rangle \end{pmatrix}$$

it becomes quaternion-real, i.e.
for $T^2 = -1$ implies that states $|n\rangle$ and $|Tn\rangle$ are orthogonal and have same energy.

write Hamiltonian in a basis $|n\rangle$, $|Tn\rangle$:

$$H_{nm} = \begin{pmatrix} \langle n|H|m \rangle & \langle n|H|Tm \rangle \\ \langle Tn|H|m \rangle & \langle Tn|H|Tm \rangle \end{pmatrix}$$

it becomes quaternion-real, i.e.

$$H_{nm} = \begin{pmatrix} \alpha & \beta \\ -\beta^* & \alpha^* \end{pmatrix} = a_0 1 + a_1 i\sigma_1 + a_2 i\sigma_2 + a_3 i\sigma_3 = l + J + K$$
GSE statistics can arise without spin. Example: a quantum graph with discrete geometrical symmetries.
GSE statistics can arise without spin.
GSE statistics can arise without spin.
Main message

GSE statistics can arise without spin.

- example: a quantum graph
GSE statistics can arise without spin.

- example: a quantum graph

- background: discrete geometrical symmetries
Quantum graphs

networks of vertices connected by bonds (with lengths)

Schrödinger equation on each bond

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\psi(x) = E\psi(x)\]

conditions at the vertices:

- e.g. continuity
- Neumann conditions (sum over \(d\psi/dx\) of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics

if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[
\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)
\]

conditions at the vertices:
- e.g. continuity
- Neumann conditions (sum over \(\psi \int dx \) of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics
if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[
\begin{align*}
-\hbar \frac{d^2}{dx^2} \psi(x) &= E \psi(x) \\
\text{conditions at the vertices: e.g. continuity} \\
+ \text{Neumann conditions (sum over } \frac{d \psi}{dx} \text{ of adjacent bonds is 0)} \\
\text{large well connected graphs display RMT spectral statistics if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE}
\end{align*}
\]
Quantum graphs

- networks of vertices connected by bonds (with lengths)
- Schrödinger equation on each bond

\[-\hbar^2 \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

conditions at the vertices:
- e.g. continuity
- + Neumann conditions (sum over \(d\psi/dx\) of adjacent bonds is 0)

large well connected graphs display RMT spectral statistics

if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)\]

- large well connected graphs display RMT spectral statistics
 - if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[
\frac{-h^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)
\]

- Schrödinger equation on each bond

- conditions at the vertices:
Quantum graphs

- networks of vertices connected by bonds (with lengths)

- Schrödinger equation on each bond

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

- conditions at the vertices: e.g. continuity
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

- Schrödinger equation on each bond

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over \(\frac{d\psi}{dx} \) of adjacent bonds is 0)
Quantum graphs

- networks of vertices connected by bonds (with lengths)

\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x) \]

- Schrödinger equation on each bond

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over \(\frac{d \psi}{dx} \) of adjacent bonds is 0)

- large well connected graphs display RMT spectral statistics
Quantum graphs

- networks of vertices connected by bonds (with lengths)

$$\frac{-\hbar^2}{2m} \frac{d^2}{dx^2} \psi(x) = E \psi(x)$$

- Schrödinger equation on each bond

- conditions at the vertices: e.g. continuity
 + Neumann conditions (sum over $\frac{d\psi}{dx}$ of adjacent bonds is 0)

- large well connected graphs display RMT spectral statistics

- if Hamiltonian and vertex conditions symmetric w.r.t. complex conjugation: GOE
Quantum graphs

[Complex Phase Factor] GUE
Quantum graphs

- Here time-reversal invariance is broken by a complex phase factor: GUE
Quantum chaos
Quantum chaos

- The following graph has a symmetry $\mathcal{T} = PK$
 ($P =$ switching to other copy, $K =$ complex conjugation)
the following graph has a symmetry $\mathcal{T} = PK$
(P = switching to other copy, K = complex conjugation)

$\mathcal{T}^2 = 1$
the following graph has a symmetry $\mathcal{T} = PK$

($P = \text{switching to other copy}, \ K = \text{complex conjugation}$)

$\mathcal{T}^2 = 1 \implies \text{GOE}$
Quantum graphs

The following graph has the anti-unitary symmetry T defined by

$$T \psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$

$$i\frac{\hbar}{2}T^2 = -\hbar^2 = \Rightarrow \text{GSE}$$

proposed realization: e.g. optical fibres
Quantum graphs

- The following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$
Quantum graphs

the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}
$$

$\mathcal{T}^2 = -1$
Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}$$

$$\mathcal{T}^2 = -1 \implies \text{GSE}$$
the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$
\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & x \in \text{left half} \\
-\psi^*(Px) & x \in \text{right half}
\end{cases}
$$

$\mathcal{T}^2 = -1 \implies \text{GSE}$

proposed realization:
Quantum graphs

- the following graph has the anti-unitary symmetry \mathcal{T} defined by

$$\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & \text{if } x \in \text{left half} \\
-\psi^*(Px) & \text{if } x \in \text{right half}
\end{cases}$$

$\mathcal{T}^2 = -1 \implies \text{GSE}$

- proposed realization: e.g. optical fibres
Quantum graphs

- the following graph has the anti-unitary symmetry \(\mathcal{T} \) defined by

\[
\mathcal{T}\psi(x) = \begin{cases}
\psi^*(Px) & \text{if } x \in \text{left half} \\
-\psi^*(Px) & \text{if } x \in \text{right half}
\end{cases}
\]

\(\mathcal{T}^2 = -1 \implies \text{GSE}

- proposed realization: e.g. optical fibres
General approach to symmetries
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries

Example: reflection symmetry
- Two subspectra:
 - Eigenfunctions even under reflection ⇒ GOE
 - Eigenfunctions odd under reflection ⇒ GOE
- Subspectra uncorrelated
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry
Symmetries

Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: reflection symmetry

![Diagram of a reflection symmetric shape with two subspectra, one even and one odd under reflection, indicating GOE behavior.](image)
Symmetries

Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: reflection symmetry

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>

Two subspectra:
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:
- eigenfunctions even under reflection
Spectral statistics in systems with (discrete) **geometric symmetries**?

Example: reflection symmetry

![Diagram showing reflection symmetry with two subspectra: one for eigenfunctions even under reflection leading to GOE.](image-url)
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

Two subspectra:
- Eigenfunctions even under reflection \Rightarrow GOE
- Eigenfunctions odd under reflection
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

Two subspectra:
- Eigenfunctions even under reflection \Rightarrow GOE
- Eigenfunctions odd under reflection \Rightarrow GOE
Symmetries

Spectral statistics in systems with (discrete) geometric symmetries?

Example: reflection symmetry

two subspectra:

- eigenfunctions even under reflection \Rightarrow GOE
- eigenfunctions odd under reflection \Rightarrow GOE
- subspectra uncorrelated
General discrete symmetries

- group of classical symmetry operations g
General discrete symmetries

- group of *classical* symmetry operations g

 in our example identity and reflection
General discrete symmetries

- group of **classical** symmetry operations \(g \)

in our example identity and reflection

- **quantum** symmetries

 \[U(g)\psi(r) = \psi(g^{-1}r) \]

 commute with Hamiltonian,
General discrete symmetries

- group of \textbf{classical} symmetry operations \(g \)

 in our example identity and reflection

- \textbf{quantum} symmetries

 \[U(g)\psi(r) = \psi(g^{-1}r) \]

 commute with Hamiltonian,

 they form a representation of the classical symmetry group, i.e.,

 \[U(gg') = U(g)U(g') \]
General discrete symmetries can diagonalize H and block-diagonalize symmetry operators $U(g) = \begin{pmatrix} M_{T1}(g) & \ldots & M_{T1}(g) \\ \vdots & \ddots & \vdots \\ M_{T2}(g) & \ldots & M_{T2}(g) \end{pmatrix}$ blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy $M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$ eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get: $U(g)\psi = M_\alpha(g)^T\psi$ consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix} M_1^T(g) & & \\ & \ddots & \\ & & M_1^T(g) \end{pmatrix}$$

blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_\alpha(g g') = M_\alpha(g) M_\alpha(g')$$

eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get:

$$U(g) \psi = M_\alpha(g)^T \psi$$

consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

\[
U(g) = \begin{pmatrix}
&M_1^T(g) \\
&\ddots & M_1^T(g) \\
& & M_1^T(g) & M_2^T(g) \\
& & & \ddots \\
& & & & M_2^T(g) \\
\end{pmatrix}
\]

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix}
M_1^T(g) & & \\
& \ddots & \\
& & M_1^T(g)
\end{pmatrix}
\begin{pmatrix}
M_2^T(g) \\
& \ddots \\
& & M_2^T(g)
\end{pmatrix}
\ldots
$$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$$
can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix}
M_1^T(g) \\
\vdots \\
M_1^T(g) \\
M_2^T(g) \\
\vdots \\
M_2^T(g) \\
\vdots
\end{pmatrix}$$

blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_\alpha(gg') = M_\alpha(g)M_\alpha(g')$$

eigenfunctions corresponding to each block have same energy
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$U(g) = \begin{pmatrix}
M_1^T(g) \\
\vdots \\
M_1^T(g) \\
M_2^T(g) \\
\vdots \\
M_2^T(g)
\end{pmatrix}$$

- blocks $M_{\alpha}(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$M_{\alpha}(gg') = M_{\alpha}(g)M_{\alpha}(g')$$

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get:

$$U(g)\psi = M_{\alpha}(g)^T\psi$$
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

\[U(g) = \begin{pmatrix} M_1^T(g) & \cdots & \cdots & M_1^T(g) \\ \vdots & \ddots & \ddots & \vdots \\ \vdots & \cdots & M_2^T(g) \\ \cdots & \cdots & \cdots & M_2^T(g) \end{pmatrix} \]

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

\[M_\alpha(gg') = M_\alpha(g)M_\alpha(g') \]

- eigenfunctions corresponding to each block have same energy if they are grouped into a vector ψ we get:

\[U(g)\psi = M_\alpha(g)^T\psi \]

- consider subspectra corresponding to irreducible representations
General discrete symmetries

- can diagonalize H and **block-diagonalize** symmetry operators

$$
U(g) = \begin{pmatrix}
M_1^T(g) & & \\
& \ddots & \\
& & M_2^T(g)
\end{pmatrix}
$$

- blocks $M_\alpha(g)$ are (irreducible) matrix representations of the classical group, they satisfy

$$
M_\alpha(gg') = M_\alpha(g)M_\alpha(g')
$$

- eigenfunctions corresponding to each block have same energy
 if they are grouped into a vector ψ we get:

$$
U(g)\psi = M_\alpha(g)^T\psi
$$

- consider subspectra corresponding to irreducible representations
General discrete symmetries
General discrete symmetries

- types of representations:
General discrete symmetries

- types of representations:
 - complex M_α
General discrete symmetries

types of representations:

- complex M_α
- real M_α
types of representations:

- complex M_{α}
- real M_{α}
- quaternion real (pseudo-real) M_{α}
Statistics inside subspectra

Why?

consider \(T = \text{complex conjugation} \); 2d pseudo-real representation

\[\psi \psi \psi \text{ transform according to } U(g) \psi \psi \psi = M_\alpha(g) T \psi \psi \psi \]

but \(T \psi \psi \psi \) transforms with \((M_\alpha(g) T \psi \psi \psi)^* \) \(\Rightarrow \) \(T \) not compatible with structure of subspace

use \(\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \) \(T \) instead:

\[\bar{T} \psi \psi \psi \text{ transforms as desired and } \bar{T} \text{ commutes with } H \]

\(\bar{T}^2 = -1 \) \(\Rightarrow \) GSE

Find a graph whose symmetry group has a pseudo-real representation.
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?
Consider $T = \text{complex conjugation}$; 2d pseudo-real representation ψ transforms according to $U(g)\psi = \mathcal{M}_\alpha(g)T\psi$ but $T\psi$ transforms with $(\mathcal{M}_\alpha(g)T)\psi$ $\Rightarrow T$ not compatible with structure of subspace.

Use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ T instead: $\bar{T}\psi$ transforms as desired and \bar{T} commutes with H $\bar{T}^2 = -1$ \Rightarrow GSE

Find a graph whose symmetry group has a pseudo-real representation.
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. $(T^2 = 1)$</th>
<th>T inv. $(T^2 = -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

consider $T = \text{complex conjugation}; 2d pseudo-real representation

ψ transform according to $U(g)\psi = M^\alpha(g)T\psi$

but $T\psi$ transforms with $(M^\alpha(g)T)\ast \Rightarrow T$ not compatible with structure of subspace

use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ T instead:

$\bar{T}\psi$ transforms as desired and \bar{T} commutes with H

$\bar{T}^2 = -1 \Rightarrow \text{GSE}$

Find a graph whose symmetry group has a pseudo-real representation.
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} =$ complex conjugation; 2d pseudo-real representation
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = $ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. $(T^2 = 1)$</th>
<th>T inv. $(T^2 = -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- Consider $\mathcal{T} = \text{complex conjugation}$; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T \psi$
- But $\mathcal{T} \psi$ transforms with $(M_\alpha(g)^T)^*$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} = \text{complex conjugation}; 2d \text{pseudo-real representation}$
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- Consider $\mathcal{T} = \text{complex conjugation}; \text{2d pseudo-real representation}$
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- But $\mathcal{T}\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- Use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathcal{T}$ instead:
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = \text{complex conjugation}; 2d$ pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} T$ instead:
 - $\bar{T}\psi$ transforms as desired and \bar{T} commutes with H
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $\mathcal{T} =$ complex conjugation; 2d pseudo-real representation
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $\mathcal{T}\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow \mathcal{T}$ not compatible with structure of subspace
- use $\bar{\mathcal{T}} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \mathcal{T}$ instead:

 $\bar{\mathcal{T}}\psi$ transforms as desired and $\bar{\mathcal{T}}$ commutes with H
- $\bar{\mathcal{T}}^2 = -1$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. $(T^2 = 1)$</th>
<th>T inv. $(T^2 = -1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = \text{complex conjugation;} 2\text{d pseudo-real representation}$
- ψ transform according to $U(g)\psi = M_{\alpha}(g)^T \psi$
- but $T\psi$ transforms with $(M_{\alpha}(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\bar{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} T$ instead:
 \[\bar{T}\psi \text{ transforms as desired and } \bar{T} \text{ commutes with } H \]
- $\bar{T}^2 = -1 \Rightarrow \text{GSE}$
Statistics inside subspectra

<table>
<thead>
<tr>
<th></th>
<th>no T inv.</th>
<th>T inv. ($T^2 = 1$)</th>
<th>T inv. ($T^2 = -1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>complex rep.</td>
<td>GUE</td>
<td>GUE</td>
<td>GUE</td>
</tr>
<tr>
<td>real rep.</td>
<td>GUE</td>
<td>GOE</td>
<td>GSE</td>
</tr>
<tr>
<td>pseudo-real rep.</td>
<td>GUE</td>
<td>GSE</td>
<td>GOE</td>
</tr>
</tbody>
</table>

Why?

- consider $T = \text{complex conjugation}; 2d\text{ pseudo-real representation}$
- ψ transform according to $U(g)\psi = M_\alpha(g)^T\psi$
- but $T\psi$ transforms with $(M_\alpha(g)^T)^* \Rightarrow T$ not compatible with structure of subspace
- use $\overline{T} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} T$ instead:
 - $\overline{T}\psi$ transforms as desired and \overline{T} commutes with H
- $\overline{T}^2 = -1 \Rightarrow \text{GSE}$

Find a graph whose symmetry group has a pseudo-real representation.
Construction of a GSE quantum graph

The simplest group with a pseudo-real representation is the quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$.

Elements can be written as products of the generators i and j.

Cayley graph: Group elements as vertices, bonds of length connect group elements related by right multiplication with bonds of length connect group elements related by right multiplication with...
Construction of a GSE quantum graph

simplest group with a pseudo-real representation:

\[Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \} \]

elements can be written as products of the generators \(i \) and \(j \).

Cayley graph:

- group elements as vertices
- bonds of length connect group elements related by right multiplication
- bonds of length connect group elements related by right multiplication
simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
elements can be written as products of the generators i and j
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation:
 quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$
 elements can be written as products of the generators i and j
- Cayley graph:
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation:
 quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
 elements can be written as products of the generators i and j

- Cayley graph:
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation:
 quaternion group $Q_8 = \{ \pm 1, \pm I, \pm J, \pm K : I^2 = J^2 = K^2 = IJK = -1 \}$
 elements can be written as products of the generators I and J

- Cayley graph:

 - group elements as vertices
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q8 = \{\pm 1, \pm I, \pm J, \pm K : I^2 = J^2 = K^2 = IJK = -1\}$
 - elements can be written as products of the generators I and J
- Cayley graph:

 - group elements as vertices
 - bonds of length L_I connect group elements related by right multiplication with I
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group \(Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \} \)
- elements can be written as products of the generators \(i \) and \(j \)
- Cayley graph:

 - group elements as vertices
 - bonds of length \(L \), connect group elements related by right multiplication with \(i \)
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$
- elements can be written as products of the generators i and j
- Cayley graph:

 - group elements as vertices
 - bonds of length L, connect group elements related by right multiplication with i
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{ \pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1 \}$
 - elements can be written as products of the generators i and j
- Cayley graph:

 - group elements as vertices
 - bonds of length L_i connect group elements related by right multiplication with i
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q8 = \{\pm1, \pm I, \pm J, \pm K : I^2 = J^2 = K^2 = IJK = -1\}$
 - elements can be written as products of the generators I and J

- Cayley graph:
 - group elements as vertices
 - bonds of length L_I connect group elements related by right multiplication with I
 - bonds of length L_J connect group elements related by right multiplication with J
Construction of a GSE quantum graph

- simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm I, \pm J, \pm K : I^2 = J^2 = K^2 = IJK = -1\}$
 - elements can be written as products of the generators I and J
- Cayley graph:
simplest group with a pseudo-real representation: quaternion group $Q_8 = \{\pm 1, \pm i, \pm j, \pm k : i^2 = j^2 = k^2 = ijk = -1\}$ elements can be written as products of the generators i and j

Cayley graph:

graph symmetric w.r.t. left multiplication with any group element
Construction of a GSE quantum graph
Construction of a GSE quantum graph

- increase size:
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs
Construction of a GSE quantum graph

- increase size: replace vertices by sub-graphs

graph with GSE subspectrum
Construction of a GSE quantum graph

... but boundary conditions mix pairs of degenerate eigenfunctions.
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

![Graph diagram]

and choose boundary conditions selecting GSE subspectrum

\[
\begin{align*}
I &= \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \\
J &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}
\end{align*}
\]
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

![Graph Image]

and choose boundary conditions selecting GSE subspectrum

![Matrix Image]

Graph with pure GSE statistics
Construction of a GSE quantum graph

- take fundamental domain (eighth of graph)

and choose boundary conditions selecting GSE subspectrum

graph with pure GSE statistics

... but boundary conditions mix pairs of degenerate eigenfunctions
Construction of a GSE quantum graph
Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph
Construction of a GSE quantum graph

- let each of the two eigenfunctions live on a separate copy of the graph
Construction of a GSE quantum graph

Let each of the two eigenfunctions live on a separate copy of the graph.

Graph with a pure GSE spectrum and no resemblance of spin.
Numerical Results

1 + 1 + \frac{i}{1} - \frac{i}{1} - \frac{i}{1} - \frac{i}{1} - \frac{i}{1}
Numerical Results

\[1 + 1 + -1 -1 + i + i - i - i \]

\[
\begin{array}{ccccccc}
0 & 0.2 & 0.4 & 0.6 & 0.8 & 1 & 1.2 \\
0 & 0.5 & 1 & 1.5 & 2 & 2.5 & 3 \\
\end{array}
\]

\[P(s) \]

Agreement with GSE,
Agreement with GSE 😊
Conclusions

Discrete symmetries with pseudo-real representations can be used to generate GSE statistics. Quantum graph with $Q8$ symmetry has GSE subspectrum, this can be isolated. Generalisation to the 'tenfold way'? Experimental realisation?
Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics.
Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics

- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated
Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics
- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated
- Generalisation to the ‘tenfold way’?
Conclusions

- Discrete symmetries with pseudo-real representations can be used to generate GSE statistics.

- Quantum graph with Q8 symmetry has GSE subspectrum, this can be isolated.

- Generalisation to the ‘tenfold way’?

- Experimental realisation?