Transversality of loop coproduct and cobracket

Dingyu Yang
Transversality for moduli spaces of holomorphic curves

Holomorphic curves in symplectic topology: important, algebraic str’s.
Transversality for moduli spaces of holomorphic curves

Holomorphic curves in symplectic topology: important, algebraic str’s.

- \((W^{2n}, \omega)\) possibly with ends like \((\mathbb{R}^\pm \times V, d(e^s \lambda))\)’s.
- \(L^n\) embedded Lagrangian possibly with ends like \((\mathbb{R}^\pm \times \text{Leg. } S)\)’s.
- auxilliary \(J\).
Transversality for moduli spaces of holomorphic curves

Holomorphic curves in symplectic topology: important, algebraic str’s.

- (W^{2n}, ω) possibly with ends like $(\mathbb{R}^\pm \times V, d(e^s \lambda))$’s.
- L^n embedded Lagrangian possibly with ends like $(\mathbb{R}^\pm \times \text{Leg. } S)$’s.
- auxiliary J.

\Rightarrow moduli spaces of J-holo. curves in (W, L) w/ bdries, punctures, levels. w/ evaluation map at punctures and (punctured) bdry loops.
Transversality for moduli spaces of holomorphic curves

Holomorphic curves in symplectic topology: important, algebraic str’s.

- (W^{2n}, ω) possibly with ends like $(\mathbb{R}^\pm \times V, d(e^s \lambda))$’s.
- L^n embedded Lagrangian possibly with ends like $(\mathbb{R}^\pm \times \text{Leg. } S)$’s.
- auxiliary J.

⇒ moduli spaces of J-holo. curves in (W, L) w/ bdries, punctures, levels.

w/ evaluation map at punctures and (punctured) bdry loops.

Conjectural picture (Fukaya, C-L-M): codimensional-1 boundary (filtered)
= (fiber) product + loop bracket + loop cobracket of evaluation maps
from simpler moduli space(s).
transversality of these "intersection"-type operations on maps
nontrivial transversality of domain moduli space as solution of $\bar{\partial} J$, Fredholm problem with domain variation, analytic limiting behavior.

punctured bordered (broken) curves

$(\mathbb{R} \times V, \mathbb{R} \times S)$ symplectization Lag

∂I

(fiber) product Loop bracket (2 domains) Loop bracket (1 domain) Loop cobracket
• transversality of these "intersection"-type operations on maps
• nontrivial transversality of domain moduli space as solution of $\bar{\partial}J$, Fredholm problem with domain variation, analytic limiting behavior.
Coproduct at chain level is relevant

For transversality, need operations defined geometrically and compatibly at the chain level, so requires smoothness of domain "generalized spaces" with corners and ev maps.
Coproduct at chain level is relevant

For transversality, need operations defined geometrically and compatibly at the chain level, so requires smoothness of domain ”generalized spaces” with corners and ev maps.

loop product

loop coproduct
Coproduct at chain level is relevant

For transversality, need operations defined geometrically and compatibly at the chain level, so requires smoothness of domain "generalized spaces" with corners and ev maps.

Focus on coproduct, severe transversality issue. Joint w/ Manuel Rivera.
Chas-Sullivan (2002): on ”sufficiently transverse” chains.
Chas-Sullivan (2002): on ”sufficiently transverse” chains.

A single family of loops $\varphi : U \to LM$, at $x \in U$, time t where loop $\varphi(x)$ self-intersects at times 0 and t, can split loop into $\varphi(x)|_{[0,t]}$ and $\varphi(x)|_{[t,1]}$.
Chas-Sullivan (2002): on ”sufficiently transverse” chains.

A single family of loops $\varphi : U \to LM$, at $x \in U$, time t where loop $\varphi(x)$ self-intersects at times 0 and t, can split loop into $\varphi(x)|_{[0,t]}$ and $\varphi(x)|_{[t,1]}$.

$e_\varphi : U \times [0,1] \to M \times M, (x, t) \mapsto (\varphi(x)(0), \varphi(x)(t))$, $\dot{e}_\varphi := e_\varphi|_{U \times (0,1)}$.

Self-inters. spacetime is $e_\varphi^{-1}(\Delta_M)$, almost never good.
Chas-Sullivan (2002): on ”sufficiently transverse” chains.

A single family of loops $\varphi : U \to LM$, at $x \in U$, time t where loop $\varphi(x)$ self-intersects at times 0 and t, can split loop into $\varphi(x)|_{[0,t]}$ and $\varphi(x)|_{[t,1]}$.

$e_{\varphi} : U \times [0, 1] \to M \times M, (x, t) \mapsto (\varphi(x)(0), \varphi(x)(t))$, $\hat{e}_{\varphi} := e_{\varphi}|_{U \times (0,1)}$.

Self-inters. spacetime is $e_{\varphi}^{-1}(\Delta_M)$, almost never good.

But $\varphi \Rightarrow$ a chain (Θ_{φ}, ν) by thickening domain s.t. $P_{\varphi} := (\hat{e}_{\Theta_{\varphi}})^{-1}(\Delta_M)$ is a manifold, killing directions by adjoining a Thom form ν.
Achieving transversality of loop coproduct via a thickening

- smooth $\alpha : [0, 1]/ \sim \to [0, 1]/ \sim$ is 0 on $[0, \epsilon] \cup [1 - \epsilon, 1]$, o/w diffeo.
- $\lambda_1 : [0, 1]/ \sim \to [0, 1]$ smooth $\lambda_1|_{[-\epsilon/2, \epsilon/2]} = ct$ and then cut-off.
- $\lambda_2 : [0, 1]/ \sim \to [0, 1]$ is 0 on $[-\epsilon/4, \epsilon/4]$ and positive o/w.
- A Riemannian metric on M with inj.rad. δ and exp.
Achieving transversality of loop coproduct via a thickening

- smooth $\alpha : [0, 1]/ \sim \to [0, 1]/ \sim$ is 0 on $[0, \epsilon] \cup [1 - \epsilon, 1]$, o/w diffeo.
- $\lambda_1 : [0, 1]/ \sim \to [0, 1]$ smooth $\lambda_1|_{[-\epsilon/2, \epsilon/2]} = ct$ and then cut-off.
- $\lambda_2 : [0, 1]/ \sim \to [0, 1]$ is 0 on $[-\epsilon/4, \epsilon/4]$ and positive o/w.
- A Riemannian metric on M with inj.rad. δ and exp.

Thickening: $\Theta_\varphi(x, v, w)(t) := \exp_{\varphi(x)(\alpha(t))}(\lambda_1(t)P_t^1(v) + \lambda_2(t)P_t^2(w)),$
where $(x, v, w) \in \varphi(\cdot)(0)^*D_\delta(TM) \oplus U \varphi(\cdot)(1/2)^*D_\delta(TM)$ and P_t^1 and P_t^2
parallel transports along loop $\varphi(x) \circ \alpha$ from 0 to t and 1/2 to t.
Achieving transversality of loop coproduct via a thickening

- smooth $\alpha : [0, 1]/ \sim \to [0, 1]/ \sim$ is 0 on $[0, \varepsilon] \cup [1 - \varepsilon, 1]$, o/w diffeo.
- $\lambda_1 : [0, 1]/ \sim \to [0, 1]$ smooth $\lambda_1 |_{[-\varepsilon/2, \varepsilon/2]} = ct$ and then cut-off.
- $\lambda_2 : [0, 1]/ \sim \to [0, 1]$ is 0 on $[-\varepsilon/4, \varepsilon/4]$ and positive o/w.
- A Riemannian metric on M with inj.rad. δ and exp.

Thickening:

\[\Theta_{\varphi}(x, v, w)(t) := \exp_{\varphi(x)(\alpha(t))}(\lambda_1(t)P^1_t(v) + \lambda_2(t)P^2_t(w)), \]

where $(x, v, w) \in \varphi(\cdot)(0) \ast D_\delta(TM) \oplus U \varphi(\cdot)(1/2) \ast D_\delta(TM)$ and P^1_t and P^2_t parallel transports along loop $\varphi(x) \circ \alpha$ from 0 to t and $1/2$ to t.

Since $\Theta_{\varphi}(x, v, w)(0) = \varphi(x)(0)$, $\Theta_{\varphi} \pitchfork \Delta_M$.

For t close to 0, self-intersection equation can be uniquely solved in v as a graph which extends smoothly over to $t = 0$. \Rightarrow The closure is a manifold!
Achieving transversality of loop coproduct via a thickening

- smooth $\alpha : [0, 1] / \sim \to [0, 1] / \sim$ is 0 on $[0, \varepsilon] \cup [1 - \varepsilon, 1]$, o/w diffeo.
- $\lambda_1 : [0, 1] / \sim \to [0, 1]$ smooth $\lambda_1|_{[-\varepsilon/2, \varepsilon/2]} = ct$ and then cut-off.
- $\lambda_2 : [0, 1] / \sim \to [0, 1]$ is 0 on $[-\varepsilon/4, \varepsilon/4]$ and positive o/w.
- A Riemannian metric on \mathcal{M} with inj.rad. δ and exp.

Thickening:

$$\Theta_\varphi(x, v, w)(t) := \exp_{\varphi(x)}(\alpha(t))(\lambda_1(t)P^1_t(v) + \lambda_2(t)P^2_t(w)),$$
where $(x, v, w) \in \varphi(\cdot)(0)^*D_\delta(TM) \oplus U \varphi(\cdot)(1/2)^*D_\delta(TM)$ and P^1_t and P^2_t parallel transports along loop $\varphi(x) \circ \alpha$ from 0 to t and $1/2$ to t.

Since $\Theta_\varphi(x, v, w)(0) = \varphi(x)(0)$, $\Theta_\varphi \cap \Delta_M$.

For t close to 0, self-intersection equation can be uniquely solved in v as a graph which extends smoothly over to $t = 0$. \Rightarrow The closure is a manifold!

Expect: smooth $\gamma \mapsto (c_\gamma, \epsilon_\gamma)$, Θ_φ can be defined w/o stopping loops via α.

Co-A_∞ for chain map modification, loop cobracket

Thom form ν for domain thickening depending only on M.

$V : (\varphi, \eta) \mapsto$

(a loop pair by splitting over P_φ, smoothened via $\alpha, \iota^* pr_1^*(\nu \wedge \pi^* \eta)$).
Co-A_∞ for chain map modification, loop cobraclacket

Thom form ν for domain thickening depending only on M.

$V : (\varphi, \eta) \mapsto$

(a loop pair by splitting over P_φ, smoothened via $\alpha, \iota^*pr_1^*(\nu \wedge \pi^*\eta)$).

- Hingston-Wahl: modification ∇ chain map on absolute chains.
Co-A_∞ for chain map modification, loop cobracket

Thom form ν for domain thickening depending only on M.

$V : (\varphi, \eta) \mapsto$

(a loop pair by splitting over P_φ, smoothened via $\alpha, \iota^* pr_1^*(\nu \wedge \pi^*\eta)$).

- Hingston-Wahl: modification ∇ chain map on absolute chains.
- (in-progress) **Coassociativity** of V on $\bigoplus_m C_*(LM^m) \Rightarrow \text{co-}$-$A_\infty$.

Co-A_∞ for chain map modification, loop cobaracket

Thom form ν for domain thickening depending only on M.

$V : (\varphi, \eta) \mapsto$

(a loop pair by splitting over P_φ, smoothened via $\alpha, \iota^* pr_1^*(\nu \wedge \pi^*\eta)$).

- Hingston-Wahl: modification ∇ chain map on absolute chains.
- (in-progress) Coassociativity of V on $\bigoplus_m C_*(LM^m) \Rightarrow co-A_\infty$.
- Expect to agree with A-S’s and E-O’s coproducts on $SH(T^*M)$.

Co-A_∞ for chain map modification, loop cobraclacket

Thom form ν for domain thickening depending only on M.

$V : (\varphi, \eta) \mapsto (a \text{ loop pair by splitting over } P_\varphi, \text{ smoothened via } \alpha, \iota^* pr_1^*(\nu \wedge \pi^* \eta))$.

- Hingston-Wahl: modification V chain map on absolute chains.
- (in-progress) Coassociativity of V on $\bigoplus_m C_*(LM^m) \Rightarrow$ co-A_∞.
- Expect to agree with A-S’s and E-O’s coproducts on $SH(T^*M)$.
- Evaluation of varying base point s and time t in the lower 2-simplex, thicken \Rightarrow htpy for commutativity symmetrize \Rightarrow loop cobraclacket.
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.

More generally, /technicality, de Rham chains $C_k(LM)$ generated over \mathbb{R} by $(\varphi : U \to LM, \eta)$, U or k_1-mfd w/ corners, $\eta \in \Omega^{k_2}_{\text{cpt}}(U)$, $k = k_1 - k_2$:

- Linearity of η,
- Sum for disjoint union of domain,
- (diff dims) $(\varphi \circ \pi, \eta) \sim (\varphi, \pi^! \eta)$ for surjective submersion π.

$\partial \pm (\partial + \text{d})$. Quasi-iso to singular chains, good for higher homotopies.

Domain "spaces" can be described smoothly by Hofer-Wysocki-Zehnder's Polyfold Fredholm structure or Fukaya-Oh-Ohta-Ono's Kuranishi structure.

My thesis, polyfold–Kuranishi correspondence, lifts Kuranishi theory to equivalence class level, show both frameworks are equivalent.

Ev map from domain structure \Rightarrow (generalized) dR chains (loop spaces).
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.

More generally, /technicality, de Rham chains $C_k(LM)$ generated over \mathbb{R} by $(\varphi : U \to LM, \eta)$, U or k_1-mfd w/ corners, $\eta \in \Omega_{\text{cpt}}^{k_2}(U)$, $k = k_1 - k_2$:

- linearity of η,
- sum for disjoint union of domain, and
- (diff dims) $(\varphi \circ \pi, \eta) \sim (\varphi, \pi! \eta)$ for surjective submersion π.
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.

More generally, /technicality, de Rham chains $C_k(LM)$ generated over \mathbb{R} by $(\varphi: U \to LM, \eta)$, U or k_1-mfd w/ corners, $\eta \in \Omega_{cpt}^{k_2}(U)$, $k = k_1 - k_2$:

- linearity of η,
- sum for disjoint union of domain, and
- (diff dims) $(\varphi \circ \pi, \eta) \sim (\varphi, \pi!\eta)$ for surjective submersion π.

d is $\pm (\partial + d)$. Quasi-iso to singular chains, good for higher homotopies.
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.

More generally, /technicality, de Rham chains $C_k(LM)$ generated over \mathbb{R} by $(\varphi : U \rightarrow LM, \eta)$, U or k_1-mfd w/ corners, $\eta \in \Omega^{k_2}_{\text{cpt}}(U)$, $k = k_1 - k_2$:

- linearity of η,
- sum for disjoint union of domain, and
- (diff dims) $(\varphi \circ \pi, \eta) \sim (\varphi, \pi!\eta)$ for surjective submersion π.

d is $\pm (\partial + d)$. Quasi-iso to singular chains, good for higher homotopies.

Domain ”spaces” can be described smoothly by Hofer-Wysocki-Zehnder’s Polyfold Fredholm structure or Fukaya-Oh-Ohta-Ono’s Kuranishi structure.

My thesis, polyfold–Kuranishi correspondence, lifts Kuranishi theory to equivalence class level, show both frameworks are equivalent.
de Rham chains and polyfold–Kuranishi correspondence

Fukaya, Irie (w/o corners) for loop product/bracket.

More generally, /technicality, de Rham chains $\mathcal{C}_k(LM)$ generated over \mathbb{R} by $(\varphi: U \to LM, \eta)$, U or k_1-mfd w/ corners, $\eta \in \Omega_{\text{cpt}}^{k_2}(U)$, $k = k_1 - k_2$:

- linearity of η,
- sum for disjoint union of domain, and
- (diff dims) $(\varphi \circ \pi, \eta) \sim (\varphi, \pi! \eta)$ for surjective submersion π.

d is $\pm (\partial + d)$. Quasi-iso to singular chains, good for higher homotopies.

Domain ”spaces” can be described smoothly by Hofer-Wysocki-Zehnder’s Polyfold Fredholm structure or Fukaya-Oh-Ohta-Ono’s Kuranishi structure.

My thesis, polyfold–Kuranishi correspondence, lifts Kuranishi theory to equivalence class level, show both frameworks are equivalent.

Ev map from domain structure \Rightarrow (generalized) dR chains (loop spaces).
IBL_∞ for loop bracket and cobracket on equivariant chains

Construction \Rightarrow loop cobracket on S^1-equivariant de Rham chains.
IBL_∞ for loop bracket and cobaracket on equivariant chains

Construction \Rightarrow loop cobaracket on S^1-equivariant de Rham chains.

Near-future goal: (Compatibility with BV \Rightarrow) non-marked point version of Irie’s loop bracket and above loop cobaracket on equivariant chains are involutive bi Lie algebra up to higher homotopy. IBL_∞, C-F-L.

Eventual goal: Using IBL_∞ structure to achieve transversality. Moduli spaces satisfying codimensional-1 degeneration \Rightarrow Maurer-Cartan elements \Rightarrow twisted (filtered) IBL_∞. \Rightarrow invariants for $((V, \ker \alpha), S)$, indep. of J, α up to IBL_∞ htpy equiv.

Contains relative symplectic field theory (with genus and multiple boundary components), e.g. splitting a Fukaya algebra along a contact hypersurface.
IBL_∞ for loop bracket and cobaracket on equivariant chains

Construction \Rightarrow loop cobaracket on S^1-equivariant de Rham chains.

Near-future goal: (Compatibility with BV \Rightarrow) non-marked point version of Irie’s loop bracket and above loop cobaracket on equivariant chains are involutive bi Lie algebra up to higher homotopy. IBL_∞, C-F-L.

Eventual goal: Using IBL_∞ structure to achieve transversality. Moduli spaces satisfying codimensional-1 degeneration
\Rightarrow Maurer-Cartan elements
\Rightarrow twisted (filtered) IBL_∞.
\Rightarrow invariants for ($(V, \ker \alpha), S$), indep. of J, α up to IBL_∞ htpy equiv.
IBL_∞ for loop bracket and cobracket on equivariant chains

Construction \Rightarrow loop cobracket on S^1-equivariant de Rham chains.

Near-future goal: (Compatibility with BV \Rightarrow) non-marked point version of Irie's loop bracket and above loop cobracket on equivariant chains are involutive bi Lie algebra up to higher homotopy. IBL_∞, C-F-L.

Eventual goal: Using IBL_∞ structure to achieve transversality. Moduli spaces satisfying codimensional-1 degeneration
\Rightarrow Maurer-Cartan elements
\Rightarrow twisted (filtered) IBL_∞.
\Rightarrow invariants for $((V, \ker \alpha), S)$, indep. of J, α up to IBL_∞ htpy equiv.

Contains relative symplectic field theory (with genus and multiple boundary components), e.g. splitting a Fukaya algebra along a contact hypersurface.
Thank you!