Information Percolation for the Ising model

Eyal Lubetzky
Courant Institute (NYU)
Joint with Allan Sly
Noisy Election Day (on a cycle)

- Setup: (1D noisy voter model with noise $0 < \varepsilon < 1$)
 - n binary voters on a cycle.
 - Every step, a uniformly chosen voter updates its vote:
 - $\text{prob. } 1 - \varepsilon$: copy a random neighbor.
 - $\text{prob. } \varepsilon$: new vote is a fair coin toss.

- How long does it take to reach equilibrium?
 - from all-1? from 01010...? from 001100...?
 - from a typical state? from a random IID state?
Definition: the classical Ising model

- Underlying geometry: $\Lambda = \text{finite 2D grid}$.
- Set of possible configurations:
 $$\Omega = \{\pm 1\}^\Lambda$$
 (each site receives a plus/minus spin)
- Probability of a configuration $\sigma \in \Omega$ given by the Gibbs distribution:

 $$\mu(\sigma) = \frac{1}{Z(\beta)} \exp\left(\beta \sum_{x \sim y} \sigma(x)\sigma(y)\right)$$

- Partition function
- Inverse temperature $\beta \geq 0$
The classical Ising model

\[\mu(\sigma) \propto \exp(\beta \sum_{x \sim y} \sigma(x)\sigma(y)) \text{ for } \sigma \in \Omega = \{\pm 1\}^\Lambda \]

- Larger \(\beta \) favors configurations with aligned spins at neighboring sites.
- Spin interactions: local, justified by rapid decay of magnetic force with distance.

- The magnetization is the (normalized) sum of spins:
 \[M(\sigma) = \frac{1}{|\Lambda|} \sum_{x \in \Lambda} \sigma(x) \]
 - Distinguishes between disorder \((M \approx 0) \) and order.
- Symmetry: \(\mathbb{E}[M(\sigma)] = 0 \). What if we break the symmetry?
The Ising phase-transition

- Ferromagnetism in this setting: [recall $M(\sigma) = \frac{1}{|\Lambda|} \sum \sigma(x)$]
 - Condition on the boundary sites all having plus spins.
 - Let the system size $|\Lambda|$ tend $\to \infty$ (\approx a magnetic field with effect $\to 0$).
- What is the typical $M(\sigma)$ for large $|\Lambda|$? Does the effect of plus boundary vanish in the limit?
The Ising phase-transition (ctd.)

- Ferromagnetism in this setting: \[M(\sigma) = \frac{1}{|\Lambda|} \sum \sigma(x) \]
 - Condition on the boundary sites all having \textit{plus} spins.
 - Let the system size $|\Lambda|$ tend to ∞

- Phase-transition at some critical β_c:
 \[
 \lim_{|\Lambda| \to \infty} \mathbb{E}^+ [M(\sigma)] = \begin{cases}
 0 & \text{if } \beta < \beta_c \\
 m_\beta > 0 & \text{if } \beta > \beta_c
 \end{cases}
 \]

 - all-plus boundary
 - spontaneous magnetization
Static vs. stochastic Ising

- Expected behavior for the Ising distribution:
 - $\beta < \beta_c$: $E^+[M(\sigma)] \xrightarrow{|\Lambda| \to \infty} 0$
 - $\beta > \beta_c$: $E^+[M(\sigma)] \xrightarrow{|\Lambda| \to \infty} c_\beta > 0$

- Expected behavior for the mixing time of dynamics:
 - $\beta < \beta_c$: logarithmic
 - $\beta > \beta_c$: exponential
 - $\beta = \beta_c$: power law

Free b.c.
Glauber dynamics for Ising

(a.k.a. the Stochastic Ising model)

- Introduced in 1963 by Roy Glauber. (heat-bath version; famous other flavor: Metropolis)

- Time-dependent statistics of the Ising model

 Cited by 2749

- One of the most commonly used samplers for the Ising distribution μ:
 - Update sites via IID Poisson(1) clocks
 - Each update replaces a spin at $x \in V$ by a new spin $\sim \mu$ given spins at $V \setminus \{x\}$.

- How long does it take it to converge to μ?
Measuring convergence to equilibrium

- **Mixing time**: (according to a given metric).
 Standard choice: L^1 (total-variation) mixing time to within distance ε is defined as
 \[
 t_{\text{mix}}(\varepsilon) = \inf\left\{ t : \max_{x_0} \left\| p^t(x_0, \cdot) - \mu \right\|_{\text{tv}} \leq \varepsilon \right\}
 \]
 (where $\|\mu - \nu\|_{\text{tv}} = \sup_{A \subset \Omega} [\mu(A) - \nu(A)]$)

- **Dependence on ε**: (cutoff phenomenon [DS81], [A83],[AD86])
 We say there is **cutoff** $\iff t_{\text{mix}}(\varepsilon) \sim t_{\text{mix}}(\varepsilon') \quad \forall$ fixed $\varepsilon, \varepsilon'$
Believed picture for Ising on \mathbb{Z}_n^d

- For some critical inverse-temperature β_c:
 - $\beta < \beta_c$
 - $\beta = \beta_c$
 - $\beta > \beta_c$ (free b.c.)

- t_{mix}:
 - $\sim c_\beta \log n$
 - $\approx n^z$
 - $\approx e^\tau_\beta n^{d-1}$

- Analogous picture verified for:
 - Complete graph [Ding, L., Peres ‘09a, ‘09b], [Levin, Luczak, Peres ‘10]:
 - $\frac{1}{2(1-\beta)} \log n + O(1)$
 - $\approx \sqrt{n}$
 - $\approx \frac{1}{\beta-1} \exp\left[\frac{3}{4}(\beta-1)^2n\right]$
 - Regular tree [Berger, Kenyon, Mossel, Peres ‘05] (high T/low T)
 - [Ding, L., Peres ‘10] (critical T)
 - Potts model on complete graph
 - [Cuff, Ding, L., Louidor, Peres, Sly ‘12]
Glauber dynamics for 2D Ising

Fast mixing at **high** temperatures:
- [Aizenman, Holley ’84]
- [Dobrushin, Shlosman ’87]
- [Holley, Stroock ’87, ’89]
- [Holley ’91]
- [Stroock, Zegarlinski ’92a, ’92b, ’92c]
- [Lu, Yau ’93]
- [Martinelli, Olivieri ’94a, ’94b]
- [Martinelli, Olivieri, Schonmann ’94]

Slow mixing at **low** temperatures:
- [Schonmann ’87]
- [Chayes, Chayes, Schonmann ’87]
- [Martinelli ’94]
- [Cesi, Guadagni, Martinelli, Schonmann ’96]

Critical power-law:
- simulations: [Ito ’93], [Wang, Hatano, Suzuki ’95], [Grassberger ’95], …: \(n^{2.17} \), …
- lower bound: [Aizenman, Holley ’84], [Holley ’91]
- upper bound (polynomial mixing): [L., Sly ’12]

\(\beta < \beta_c \)
\[t_{mix} \approx \log n \]

\(\beta > \beta_c \)
\[t_{mix} = e^{(\tau_\beta + o(1))n^{d-1}} \]

\(\beta_c \)
\[n_c^1 \leq t_{mix} \leq n_c^2 \]
Glauber dynamics for 2D Ising

- **$\beta < \beta_c$**
 - $t_{\text{mix}} : O(\log n)$
 - n^c (sim: $n^{2.17...}$)

- **$\beta > \beta_c$**
 - Free b.c.
 - $e^{(\tau_\beta + o(1))n^{d-1}}$

- **High temperature in 2D:**
 - [L., Sly ’13]: **cutoff**
 - For any $\beta < \beta_c = \frac{1}{2} \log(1 + \sqrt{2})$:
 - $t_{\text{mix}}(\varepsilon) = \frac{1}{2} \lambda^{-1} \log n + O(\log \log n)$

- Method caveat: needs **strong spatial mixing**; e.g., breaks on 3D Ising for β close to β_c.
High temperature unknowns (I)

- High temperature \leftrightarrow Infinite temperature:
 Qualitatively, $\beta < \beta_c$ believed to behave \approx as $\beta = 0$.

\[t_{\text{mix}}(\epsilon) = c \log n + O(1) \]

- $\beta = 0$: (independent spins) one of the first examples of cutoff:
 [Aldous ’83], [Diaconis Shahshahani ’87]
 [Diaconis, Graham, Morrisson ’90]

 \Rightarrow expect cutoff $\forall \beta < \beta_c$ (conj. [Peres ’04]) & with $O(1)$-window

- Concretely: for 3D Ising (e.g. on a torus) at $\beta = 0.99 \beta_c$:
 does the dynamics exhibit cutoff? if so, where & what is the window?
High temperature unknowns (II)

Warm (random) start vs. cold (ordered) start: random start is better than ordered

- e.g.

Concretely: for 3D Ising at $\beta = 0.01$:

$?\quad$what is $t_{\text{mix}}^U(\epsilon) = \inf\left\{ t : \left\| \frac{1}{|\Omega|} \sum_{x_0} p^t(x_0, \cdot) - \mu \right\|_{\text{tv}} \leq \epsilon \right\}$?

how does it compare with $t_{\text{mix}}(\epsilon)$?
High temperature unknowns (III)

- **Universality of cutoff:**
 on any locally finite geometry there should be cutoff if the temperature is high enough (function of max-degree)

 - $\exists c_0 > 0$: The Ising model on any graph G on n vertices with maximal degree d at $\beta < c_0/d$ has $t_{\text{mix}} = O(\log n)$
 - [Dobrushin ’71], [Holley ’72], [Dobrushin-Shlosman ’85], [Aizenman-Holley ’87]

 - \Rightarrow expect cutoff $\forall \beta < \kappa/d$, and with $O(1)$-window.

- Concretely: for Ising on a binary tree at $\beta = 0.01$:
 - does the dynamics exhibit cutoff?
 - if so, where & what is the window?
Recipe for stochastic Ising analysis

Traditional approach to sharp mixing results
1. Establish spatial properties of static Ising measure
2. Use to drive a multi-scale analysis of dynamics.

Example: best-known results on 2D Ising (torus \(\mathbb{Z}_n^2 \)):
- [L., Sly ‘13]: cutoff at \(\beta < \beta_c = \frac{1}{2} \log(1 + \sqrt{2}) \)
 - used log-Sobolev ineq. & strong spatial mixing.
- [L., Sly ‘12]: power-law at \(\beta_c \)
 - used SLE behavior of critical interfaces.
- [L., Martinelli, Sly, Toninelli ‘13]: at \(\beta > \beta_c \)
 - quasi-polynomial mixing under all-plus b.c.
 - uses interface convergence to Brownian bridges
New framework for the analysis

- Traditional approach to sharp mixing results
 1. Establish spatial properties of static Ising measure
 2. Use to drive a multi-scale analysis of dynamics.

- New approach: study these simultaneously examining information percolation clusters in the space-time slab:
 - track update lineage back in time.
 - update either (a) branches out, or (b) terminates ("oblivious")
 - analyze RED/GREEN/BLUE clusters...

Eyal Lubetzky, Courant Institute
Results: cutoff up to β_c in 3D Ising

- Confirm Peres’s conj. on \mathbb{Z}_n^d for any d, with $O(1)$-window.
- **Theorem:** ([L.-Sly ’14+])

 $\forall d \geq 1$ and $\beta < \beta_c$ there is **cutoff** with an $O(1)$-window at

 $t_m = \inf \left\{ t : \mathbb{E}_+ \left[M(\sigma_t) \right] \leq \sqrt{n^d} \right\}$

- Examples:
 - $d = 1$: $t_m = \frac{1}{2(1-\tanh(2\beta))} \log n$.
 - $\beta = 0$: $t_m = \frac{1}{2} \log n$ (matching [Aldous ’83])

[recall $M(\sigma) = \frac{1}{|\Lambda|} \sum \sigma(x)$]
Results: initial states

- Warm start is twice faster:
 - All-plus starting state is worst (up to an additive $O(1)$)
 [but twice faster than naïve monotone coupling bound].
 - Uniform initial state \approx twice faster than all-plus.
 - Almost \forall deterministic initial state \approx as bad as all-plus.

- Example: the 1D Ising model (\mathbb{Z}_n):
 Theorem: ([L.-Sly ’14+])

$$\text{Fix } \beta > 0 \text{ and } 0 < \varepsilon < 1 \text{; set } t_m = \frac{1}{2(1 - \tanh(2\beta))} \log n.$$

1. (Annealed) $t_{\text{mix}}^{(U)}(\varepsilon) \sim \frac{1}{2} t_m$
2. (Quenched) $t_{\text{mix}}^{(x_0)}(\varepsilon) \sim t_{\text{mix}}^{(+)}(\varepsilon) \sim t_m$ for almost $\forall x_0$
Results: universality of cutoff

- **Paradigm:** cutoff for *any locally finite geometry* at high enough temperature (including expanders, trees, ...)

- **Theorem:** ([L.-Sly ’14+])
 \[\exists \kappa > 0 \text{ so that, if } G \text{ is any } n\text{-vertex graph with degrees } \leq d \text{ and } \beta < \kappa/d, \text{ then } \exists \text{ cutoff with an } O(1)\text{-window at} \]
 \[t_m = \inf \left\{ t : \sum_x \mathbb{E}_+ \left[M(\sigma_t(x))^2 \right] \leq 1 \right\} . \]

- Moreover:
 \[t_{mix}^{(U)} \leq \left(\frac{1}{2} + \epsilon_\beta \right) t_m \text{ yet } t_{mix}^{(x_0)} \geq \left(1 - \epsilon_\beta \right) t_m \text{ a.e. } x_0. \]
The new framework (revisited)

- Information percolation clusters in the space-time slab:
 - track update lineage back in time.
 - update either (a) branches out, or (b) terminates ("oblivious")
Information percolation clusters

Blue:
dies out quickly in space & time.

Red:
top spins are affected by initial state.

Green:
o/w.

- Rough idea: condition on Green, let the effect of Red clusters vanish among Blue (show $\mathbb{E} \left[2^{R \cap R'} | G \right] \to 1$).
Example: the framework in 1D

- In 1D: $\theta = \mathbb{P}(\text{oblivious update}) = 1 - \tanh 2\beta$
- Update history: continuous-time RW killed at rate θ.
- $\mathbb{P}(\text{surviving to time } t_m) \approx 1/\sqrt{n}$.
- Cutoff at $t_m = \frac{1}{2\theta} \log n$
- Effect of the initial state on the final state is in terms of the bias of the cont.-time RW...

the 3 cluster classes (R/G/B) in \mathbb{Z}_{256}
Example: random initial state

- Handling a uniform (IID) starting configuration:
 - Compare the dynamics directly with Ising measure: develop history to time $-\infty$ (coupling from the past).
 - Redefine **RED** clusters (coalesce before time 0).
Losing red clusters in a blue sea

Lemma: ([Miller, Peres ’12])

Let μ be a measure on $\sigma \in \Omega = \{\pm 1\}^n$ as follows:

1. draw a random variable $R \subseteq [n]$ via a law $\tilde{\mu}$;
2. let $\sigma_R \sim \text{law } \phi_R$ and $\sigma_{[n]\setminus R} \sim \text{IID Bernoulli} \begin{pmatrix} +1 & 1/2 \\ -1 & 1/2 \end{pmatrix}$

$$\Rightarrow \|\mu - \nu\|_{L^2(\nu)}^2 \leq \mathbb{E}\left[2|R \cap R'|\right] - 1$$

- the set R embodies the nontrivial part of μ
- has a negligible effect provided the exponential moment can be controlled...
Open problems

- High temperature regime for other spin-systems (Potts / Independent sets / Legal colorings / Spin glass,...):
 - asymptotic mixing on the lattice up to β_c
 - cutoff on a transitive expander
 - asymptotic mixing from random starting states (e.g., compare ordered/disordered start in Potts)

- 3D Ising:
 - no cutoff at criticality
 - power-law behavior at criticality
 - sub-exponential upper bound at low temperatures under all-plus b.c.
Thank you