Problems in local Galois deformation theory

Brandon Levin

September 30, 2013
Modularity

Theorem (Wiles, Taylor-Wiles, BCDT): Any elliptic curve E/\mathbb{Q} is modular.

An elliptic curve is **modular** if $\rho_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \rightarrow \text{GL}_2(\mathbb{Q}_p)$ is isomorphic to ρ_f for some modular form f.
Modularity lifting

For any p-adic representations ρ, let $\bar{\rho}$ denote the (semi-simplified) reduction mod p.

Modularity lifting prototype: If ρ is a p-adic representation of $\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ satisfying conditions X, Y, and Z, then $\bar{\rho}$ modular implies ρ is modular.
Local conditions

The most common conditions are conditions on the restriction of ρ to the decomposition groups $\text{Gal}(\overline{\mathbb{Q}}_\ell/\mathbb{Q}_\ell)$ for each prime ℓ and the most subtle of these occur when $\ell = p$.

Let K be a finite extension of \mathbb{Q}_p and let Γ_K be the absolute Galois group of K. Fix

$$\bar{\rho} : \Gamma_K \to \text{GL}_n(\mathbb{F}_p).$$

There is a universal local deformation space $D_{\bar{\rho}}$.
Flat deformations

The flat deformation space D^fl_ρ is the subspace of D_ρ consisting of representations that come from finite flat group schemes over the ring of integers \mathcal{O}_K of K.

Example: If E is an elliptic curve over K with good reduction, then the Galois representations on the p^n-torsion points of E are flat for all n. In particular, ρ_E lies in D^fl_ρ.
Generalizations

- (Higher weight) Crystalline deformation spaces $D_{\bar{\rho}}^{\text{cris},\mu}$ with Hodge type μ ($D_{\bar{\rho}}^{\text{fl}}$ is essentially the case of Hodge type $\{0, 1\}$.)
- (Higher level) Semi-stable deformation spaces $D_{\bar{\rho}}^{\text{st},\mu}$
Questions

1. What are the connected components of $D^\text{fl}_{\rho}[1/p]$? $D^\text{cris,}\mu_{\rho}[1/p]$? $D^\text{st,}\mu_{\rho}[1/p]$?

2. What is the structure mod p of D^fl_{ρ}? $D^\text{cris,}\mu_{\rho}$? $D^\text{st,}\mu_{\rho}$?
 (Breuil-Mézard conjecture)
Progress

Assume $\bar{\rho}$ is irreducible.

- When K is unramified over \mathbb{Q}_p and μ is "small" relative to p, then $D^{\text{cris},\mu}_\rho$ is smooth and has just one component.
- (Kisin, Imai, Gee, Hellmann) In the case of GL_2, they answer Question 1 for $D^{\text{fl}}_\rho[1/p]$ with no restrictions K.
- There has also been progress on Question 2 for GL_2 (see recent work of Gee and Kisin).
Kisin’s ground-breaking technique was to introduce a resolution

$$X^*_{\bar{\rho}, \mu} \to D^*_{\bar{\rho}, \mu}$$

of the * deformation space which is a moduli space of ”linear algebra” data (using deep results from integral p-adic Hodge theory).

In the flat case, one understands the singularities of $X^{\text{fl}, \mu}_{\bar{\rho}}$ using local models of a Shimura varieties. This was essential in answering the connected components question for flat deformation spaces when K is ramified.
G-valued Galois deformations

Let G be a reductive group over \mathbb{Z}_p. For any $\bar{\rho} : \Gamma_K \to G(\mathbb{F}_p)$, there is a universal space $D_{\bar{\rho}, G}$ of G-valued Galois deformations. There are also crystalline and semi-stable subspaces with specified Hodge type μ.

Theorem(-): There exists a projective morphism

$$\Theta : X_{\bar{\rho}, G}^{\text{cris}, \mu} \to D_{\bar{\rho}, G}^{\text{cris}, \mu}$$

which is an isomorphism with p inverted. Furthermore, if μ is sufficiently “small,” then the local structure of $X_{\bar{\rho}, G}^{\text{cris}, \mu}$ is equivalent to that of a local model for the group $\text{Res}_{K/\mathbb{Q}_p} G$.
Conclusions

- The Theorem on the previous slide is a first step toward answering the connected components question for G-valued "flat" deformation spaces.
- One would like to understand the structure of $X_{\text{cris},\mu}^{\rho,G}$ in the higher weight situation (μ large).
- One hopes results on the connected components question will lead to better modularity lifting theorems.