PCPs of sub-constant error via derandomized direct product

Irit Dinur Or Meir

Weizmann Institute
Department of Computer Science and Applied Mathematics
1 Introduction

2 Direct Product PCPs

3 Construction

- PCP based on Direct Product
- PCP based on Derandomized Direct Product
- PCPs and de-Bruijn Graphs
Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

- If $x \in L$, then $\exists \pi$ s.t. $V^\pi(x)$ accepts w.p. 1.
- If $x \notin L$, then $\forall \pi$: $V^\pi(x)$ accepts with small probability.
- V makes few queries to the proof string.
Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

- If $x \in L$, then $\exists \pi$ s.t. $V^\pi(x)$ accepts w.p. 1.
- If $x \not\in L$, then $\forall \pi$: $V^\pi(x)$ accepts with small probability.
- V makes few queries to the proof string.
Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

- If $x \in L$, then $\exists \pi$ s.t. $V^\pi(x)$ accepts w.p. 1.
- If $x \notin L$, then $\forall \pi$: $V^\pi(x)$ accepts with small probability.
- V makes few queries to the proof string.
Recall: A PCP verifier V for a language L is a probabilistic oracle machine that on input x:

- If $x \in L$, then $\exists \pi$ s.t. $V^\pi(x)$ accepts w.p. 1.
- If $x \notin L$, then $\forall \pi$: $V^\pi(x)$ accepts with small probability.
- V makes few queries to the proof string.
The PCP theorem [AS92, ALMSS92]

Every $L \in \text{NP}$ has a PCP verifier with constant q, s, and $|\Sigma|$, and with $\ell = \text{poly}(n)$.

- q - query complexity.
- s - soundness error.
- ℓ - proof length.
- Σ - proof alphabet.
PCP parameters

- q - query complexity.
- s - soundness error.
- ℓ - proof length.
- Σ - proof alphabet.

The PCP theorem [AS92, ALMSS92]

Every $L \in \textbf{NP}$ has a PCP verifier with constant q, s and $|\Sigma|$, and with $\ell = \text{poly } (n)$.
One research direction, useful for hardness of approximation, is decreasing the soundness error:

- Wish to decrease s as much as possible - ideally to a sub-constant.
- Wish to maintain constant q - ideally 2.
- Wish to maintain polynomial ℓ.
- Since $s \geq 1/|\Sigma|^q$, must have large Σ.
One research direction, useful for hardness of approximation, is decreasing the soundness error:

- Wish to decrease s as much as possible - ideally to a sub-constant.
- Wish to maintain constant q - ideally 2.
- Wish to maintain polynomial ℓ.
- Since $s \geq 1/|\Sigma|^q$, must have large Σ.
Via parallel repetition [R95], one can get such a PCP with arbitrarily small constant $s > 0$.

Folklore (explicit in [MR08]) - using low-degree manifolds: $s = 1/\text{poly log } n$, $|\Sigma| = \exp (\text{poly log } n)$.

Recent result of [MR08] (simplification by [DH09]): $\forall s$ have $|\Sigma| = \exp (1/s)$.
Via parallel repetition [R95], one can get such a PCP with arbitrarily small constant $s > 0$.

Folklore (explicit in [MR08]) - using low-degree manifolds: $s = 1/\text{poly log } n$, $|\Sigma| = \exp(\text{poly log } n)$.

Recent result of [MR08] (simplification by [DH09]): $\forall s$ have $|\Sigma| = \exp(1/s)$.
Via parallel repetition [R95], one can get such a PCP with arbitrarily small constant $s > 0$.

Folklore (explicit in [MR08]) - using low-degree manifolds: $s = 1/poly \log n$, $|\Sigma| = \exp (poly \log n)$.

Recent result of [MR08] (simplification by [DH09]): $\forall s$ have $|\Sigma| = \exp (1/s)$.
We show an alternative approach for achieving the folklore result \((s = 1/\text{poly log } n, |\Sigma| = \exp(\text{poly log } n))\).

Simpler, more intuitive - using only the sampling properties of linear spaces.

Our approach is based on derandomized direct product.

Work in progress: Plugging the construction into the framework of [DH09].
Our work

- We show an alternative approach for achieving the folklore result ($s = 1 / \text{poly log } n$, $|\Sigma| = \exp (\text{poly log } n)$).
- Simpler, more intuitive - using only the sampling properties of linear spaces.

- Our approach is based on derandomized direct product.

- Work in progress: Plugging the construction into the framework of [DH09].
Our work

- We show an alternative approach for achieving the folklore result \(s = 1 / \text{poly} \log n, |\Sigma| = \exp(\text{poly} \log n) \).
- Simpler, more intuitive - using only the sampling properties of linear spaces.
- Our approach is based on derandomized direct product.
- Work in progress: Plugging the construction into the framework of [DH09].
Outline

1. Introduction

2. Direct Product PCPs

3. Construction
 - PCP based on Direct Product
 - PCP based on Derandomized Direct Product
 - PCPs and de-Bruijn Graphs
Sequential and Parallel Repetition

- **Sequential repetition:** Invoking the verifier k times.
 - Decreasing s to s^k.
 - Increasing q to $k \cdot q$.

- **Parallel repetition:** Making invocations in parallel.
 - Combining $k \cdot q$ queries into q queries.
Sequential and Parallel Repetition

- **Sequential repetition:** Invoking the verifier k times.
- Decreasing s to s^k.
- Increasing q to $k \cdot q$.

- **Parallel repetition:** Making invocations in parallel.
- Combining $k \cdot q$ queries into q queries.
Given a string $w \in \Sigma^\ell$, the k-th direct product (k-DP) of w, denoted $w \otimes^k$, is a string of length $\binom{\ell}{k}$ over Σ^k.

For every $i = \{i_1, \ldots, i_k\} \subseteq [\ell]$, we define $(w \otimes^k)_i = (w_{i_1}, \ldots, w_{i_k})$.

In derandomized direct product, we take only some of the k-subsets.
Given a string $w \in \Sigma^\ell$, the k-th direct product (k-DP) of w, denoted $w \otimes^k$, is a string of length $\binom{\ell}{k}$ over Σ^k.

For every $i = \{i_1, \ldots, i_k\} \subseteq [\ell]$, we define $(w \otimes^k)_i = (w_{i_1}, \ldots, w_{i_k})$.

In derandomized direct product, we take only some of the k-subsets.
The proof strings of the new PCP are k-DPs of the proof strings of the original PCP.

A query to the new proof simulates k queries to the original proof.

One test of the new verifier simulates k tests of the original verifier.
The proof strings of the new PCP are k-DPs of the proof strings of the original PCP.

A query to the new proof simulates k queries to the original proof.

One test of the new verifier simulates k tests of the original verifier.
Parallel Repetition

- The proof strings of the new PCP are k-DPs of the proof strings of the original PCP.
- A query to the new proof simulates k queries to the original proof.
- One test of the new verifier simulates k tests of the original verifier.
Suppose we are given a false claim $x \notin L$ and a proof Π for the new verifier.

If Π is k-DP (i.e., $\Pi = \pi \otimes^k$), the new verifier accepts with probability $\leq s^k$.

The proof length increases from ℓ to $\approx \ell^k$.

For super-constant k, the proof length is super-polynomial.

So, wish to derandomize in order to obtain sub-constant error.
Suppose we are given a false claim $x \notin L$ and a proof Π for the new verifier.

If Π is k-DP (i.e., $\Pi = \pi^\otimes k$), the new verifier accepts with probability $\leq s^k$.

The proof length increases from ℓ to $\approx \ell^k$.

For super-constant k, the proof length is super-polynomial.

So, wish to derandomize in order to obtain sub-constant error.
Problem: The proof Π may not be a k-DP,

- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.
- But much, much more complicated proof.
- Difficult to derandomize.
Parallel Repetition

- Problem: The proof Π may not be a k-DP,

- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.

- But much, much more complicated proof.
- Difficult to derandomize.
Parallel Repetition

- Problem: The proof Π may not be a k-DP,

- Parallel Repetition Theorem [R95]: the new verifier still accepts with probability $\leq \exp(-k)$.

- But much, much more complicated proof.
- Difficult to derandomize.
PCP based on Direct Product Test

- Natural solution: **Direct Product Test**.
- Test that the proof string is indeed a direct product.
- A DP test was analyzed by [GS97, DR04, DG08, IKW09].
 - [IKW09] used this DP test to construct a PCP.
 - This gives a considerably simpler proof for a “parallel repetition”-like theorem.
Natural solution: Direct Product Test.

Test that the proof string is indeed a direct product.

A DP test was analyzed by [GS97, DR04, DG08, IKW09].

[IKW09] used this DP test to construct a PCP.

This gives a considerably simpler proof for a “parallel repetition”-like theorem.
[IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.

However, they did not construct a PCP based on this derandomized direct product.

Our work: Constructing a PCP based on the derandomized direct product of [IKW09].

Thereby obtaining PCPs of sub-constant error.
[IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.

However, they did not construct a PCP based on this derandomized direct product.

Our work: Constructing a PCP based on the derandomized direct product of [IKW09].

Thereby obtaining PCPs of sub-constant error.
[IKW09] also suggested a notion of derandomized direct product, and showed it can be tested.

However, they did not construct a PCP based on this derandomized direct product.

Our work: Constructing a PCP based on the derandomized direct product of [IKW09].

Thereby obtaining PCPs of sub-constant error.
Outline

1 Introduction

2 Direct Product PCPs

3 Construction
 - PCP based on Direct Product
 - PCP based on Derandomized Direct Product
 - PCPs and de-Bruijn Graphs
Outline

1. Introduction
2. Direct Product PCPs
3. Construction
 - PCP based on Direct Product
 - PCP based on Derandomized Direct Product
 - PCPs and de-Bruijn Graphs
Constraint Graphs

- Proof coordinate \equiv Vertex.
- Proof string \equiv Assignment of symbols in Σ to the vertices.
- Possible test \equiv Edge.

- $x \in L \equiv$ Graph s.t. \exists satisfying assignment.
- $x \notin L \equiv$ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

Rest of the talk

Original verifier viewed as a graph.
Constraint Graphs

- Proof coordinate \equiv Vertex.
- Proof string \equiv Assignment of symbols in Σ to the vertices.
- Possible test \equiv Edge.

- $x \in L \equiv$ Graph s.t. \exists satisfying assignment.
- $x \notin L \equiv$ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

Rest of the talk

Original verifier viewed as a graph.
Constraint Graphs

- Proof coordinate ≡ Vertex.
- Proof string ≡ Assignment of symbols in Σ to the vertices.
- Possible test ≡ Edge.

- $x \in L$ ≡ Graph s.t. \exists satisfying assignment.
- $x \notin L$ ≡ Graph s.t. \forall assignment satisfies $\leq s$ fraction of the edges.

Rest of the talk

Original verifier viewed as a graph.
Parallel Repetition on Constraint Graphs

- The verifier chooses \(k \) random edges.
- The verifier queries the oracle on the set of left endpoints and on the set of right endpoints.
Direct Product Test [GS97, DR04, DG08, IKW09]

- Wish to test that a string Π is a k-DP.
- Choose a k_1-subset $A \subseteq V$.
- Choose k-sets $B_1, B_2 \subseteq V$ containing A.
- Check that Π_{B_1} and Π_{B_2} agree on A.
- If Π is far from any k-DP, the test rejects w.h.p.
PCP based on DP Test

Natural way to combine parallel repetition with direct product (different than [IKW09]):
More convenient way to view it.
Given $G = (V, E)$ and Π:

- Choose k_0-set $E_0 \subseteq E$. Let C_1 and C_2 be the left and right endpoints of E_0.
- Choose a k_1-subset $A \subseteq V$.
- Choose k-sets B_1 and B_2 of V containing $A \cup C_1$ and $A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0.

If G has constant soundness, then the probability that the test accepts is $\approx \exp(-k_0)$.
Given $G = (V, E)$ and Π:

- Choose k_0-set $E_0 \subseteq E$. Let C_1 and C_2 be the left and right endpoints of E_0.
- Choose a k_1-subset $A \subseteq V$.
- Choose k-sets B_1 and B_2 of V containing $A \cup C_1$ and $A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0.

If G has constant soundness, then the probability that the test accepts is $\approx \exp(-k_0)$.
Outline

1 Introduction

2 Direct Product PCPs

3 Construction
 - PCP based on Direct Product
 - PCP based on Derandomized Direct Product
 - PCPs and de-Bruijn Graphs
Suppose we want to take the direct product of a string $w \in \Sigma^\ell$.

- Identify coordinates in $[\ell]$ with \mathbb{F}^m.
- Instead of taking all k-sets, take only sets that are d-dimensional subspaces of \mathbb{F}^m.
Wish to test that a string Π is a k-DDP.
Choose a d_1-subspace A of \mathbb{F}^m.
Choose d-subspaces B_1, B_2 containing A.
Check that Π_{B_1} and Π_{B_2} agree on A.
If Π is far from any k-DDP, the test rejects w.h.p. [IKW09].
Imagine the following test:

- Choose k_0-set $E_0 \subseteq E$. Let C_1 and C_2 be the left and right endpoints of E_0.
- Choose a d_1-subspace A.
- Choose d-subspaces B_1, B_2 containing $A \cup C_1, A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy the edges in E_0.

How do we know that B_1 and B_2 even exist?
Graphs with linear structure

We say that a graph $G = (V, E)$ has **linear structure** if the following holds:

- The vertices V of G are identified with \mathbb{F}^m.
- The edges E of G form a subspace of \mathbb{F}^{2m}.

And:

- Let E_0 be a random d_0-subspace of E.
- Let C be either the heads or tails of the edges in E_0.
- Then, C is a random d_0-subspace of \mathbb{F}^m.
Graphs with linear structure

We say that a graph \(G = (V, E) \) has **linear structure** if the following holds:

- The vertices \(V \) of \(G \) are identified with \(\mathbb{F}^m \).
- The edges \(E \) of \(G \) form a subspace of \(\mathbb{F}^{2m} \).

And:

- Let \(E_0 \) be a random \(d_0 \)-subspace of \(E \).
- Let \(C \) be either the heads or tails of the edges in \(E_0 \).
- Then, \(C \) is a random \(d_0 \)-subspace of \(\mathbb{F}^m \).
Graphs with linear structure

We say that a graph $G = (V, E)$ has **linear structure** if the following holds:

- The vertices V of G are identified with \mathbb{F}^m.
- The edges E of G form a subspace of \mathbb{F}^{2m}.
- And:
 - Let E_0 be a random d_0-subspace of E.
 - Let C be either the heads or tails of the edges in E_0.
 - Then, C is a random d_0-subspace of \mathbb{F}^m.
Given $G = (V, E)$ with linear structure and Π:
- Choose d_0-subspace $E_0 \subseteq E$. Let C_1 and C_2 be the left and right endpoints of E_0.
- Choose a d_1-subspace A.
- Choose d-subspaces B_1, B_2 containing $A \cup C_1, A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0.

If G has constant soundness, then the probability that the test accepts is $\approx 1/k_0^{O(1)}$.
PCP based on Derandomized DP Test

Given $G = (V, E)$ with linear structure and Π:

- Choose d_0-subspace $E_0 \subseteq E$. Let C_1 and C_2 be the left and right endpoints of E_0.
- Choose a d_1-subspace A.
- Choose d-subspaces B_1, B_2 containing $A \cup C_1, A \cup C_2$.
- Check that Π_{B_1} and Π_{B_2} agree on A, and satisfy E_0.

If G has constant soundness, then the probability that the test accepts is $\approx 1/k_0^{\Omega(1)}$.
Outline

1. Introduction

2. Direct Product PCPs

3. Construction
 - PCP based on Direct Product
 - PCP based on Derandomized Direct Product
 - PCPs and de-Bruijn Graphs
de-Bruijn Graphs

A de-Bruijn graph is:

- A layered graph with $\text{poly}(\log n)$ layers.
- The vertices of every layer are identified with \mathbb{F}^t.
- The vertex $(\alpha_1, \ldots, \alpha_t) \in \mathbb{F}^t$ in layer i is connected with $(\alpha_2, \ldots, \alpha_t, \beta)$ in layer $i + 1$ for every $\beta \in \mathbb{F}$.

(Wikipedia)
de-Bruijn Graphs

de-Bruijn graphs have linear structure:

- We identify the vertices of the graph with \mathbb{F}^m for $m = t + 1$.
- Let γ be a generator of the multiplicative group of \mathbb{F}.
- The vertex $(\alpha_1, \ldots, \alpha_t)$ in layer i is identified with $(\gamma^i, \alpha_1, \ldots, \alpha_t)$.
- Edges are of the form $((\gamma^i, \alpha_1, \ldots, \alpha_t), (\gamma^{i+1}, \alpha_2, \ldots, \alpha_t, \beta))$
 - clearly a subspace of \mathbb{F}^{2m}.
Routing on de-Bruijn Graphs

de-Bruijn Graphs are routing networks:

- Given a permutation σ of the first layer to the last layer.
- Can find paths from each vertex v in the first layer to $\sigma(v)$.
- The paths are vertex-disjoint.
Embedding PCPs on de-Bruijn Graphs

- We can use it to embed any constraint graph $G = (V, E)$ in a de-Bruijn graph.
- With loss of generality, constraint graph has constant degree.
- Variant of [BFLS91, PS94].

- Assume that each vertex had degree 1, then:
 - Identify the first layer with V, and same for the last layer.
 - Define $\sigma(u) = v$ if v is the neighbor of u in G.
 - Find vertex-disjoint paths for σ.
 - Embed the edges of G on the vertex-disjoint paths.
Embedding PCPs on de-Bruijn Graphs

- We can use it to embed any constraint graph $G = (V, E)$ in a de-Bruijn graph.
- With loss of generality, constraint graph has constant degree.
- Variant of [BFLS91, PS94].

Assume that each vertex had degree 1, then:

- Identify the first layer with V, and same for the last layer.
- Define $\sigma(u) = v$ if v is the neighbor of u in G.
- Find vertex-disjoint paths for σ.
- Embed the edges of G on the vertex-disjoint paths.
Embedding PCPs on de-Bruijn Graphs

- How do we embed an edge e of G on a path e_1, \ldots, e_p?
- Put equality constraints on e_1, \ldots, e_{p-1}.
- Associate e_p with the constraint of e.

If G has constant degree d, repeat d times.
Embedding PCPs on de-Bruijn Graphs

- How do we embed an edge e of G on a path e_1, \ldots, e_p?
- Put equality constraints on e_1, \ldots, e_{p-1}.
- Associate e_p with the constraint of e.

If G has constant degree d, repeat d times.
The embedded PCP has soundness error $1 - \frac{1-s}{\text{poly log } n}$.
This is affordable.
We obtain PCPs of sub-constant soundness ($s = 1 / \text{poly log } n$, $|\Sigma| = \exp(\text{poly log } n)$).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness ($s = 1/\text{poly log } n$, $|\Sigma| = \exp (\text{poly log } n)$).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness ($s = 1/\text{poly log } n$, $|\Sigma| = \exp(\text{poly log } n)$).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness ($s = 1/poly \log n$, $|\Sigma| = \exp\ (\text{poly log } n)$).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
Summary

- We obtain PCPs of *sub-constant soundness* \(s = 1/\text{poly log } n, \quad |\Sigma| = \exp(\text{poly log } n) \).

- The construction is based on a **direct product** approach:
 1. Testing that the proof is a direct product.
 2. Performing parallel repetition.
 3. We use **derandomized** direct product.

- This is done by:
 1. Showing a test for graphs with **linear structure**.
 2. Showing that **de-Bruijn graphs** have linear structure.
 3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness \((s = 1/\text{poly log } n, |\Sigma| = \exp(\text{poly log } n))\).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
Summary

- We obtain PCPs of sub-constant soundness ($s = 1/poly \log n$, $|\Sigma| = \exp(poly \log n)$).

- The construction is based on a direct product approach:
 1. Testing that the proof is a direct product.
 2. Performing parallel repetition.
 3. We use derandomized direct product.

- This is done by:
 1. Showing a test for graphs with linear structure.
 2. Showing that de-Bruijn graphs have linear structure.
 3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness ($s = 1/\text{poly log } n$, $|\Sigma| = \exp(\text{poly log } n)$).

The construction is based on a direct product approach:

1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:

1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
We obtain PCPs of sub-constant soundness ($s = 1/\text{poly log } n$, $|\Sigma| = \text{exp} (\text{poly log } n)$).

The construction is based on a direct product approach:
1. Testing that the proof is a direct product.
2. Performing parallel repetition.
3. We use derandomized direct product.

This is done by:
1. Showing a test for graphs with linear structure.
2. Showing that de-Bruijn graphs have linear structure.
3. Embedding any PCP on a de-Bruijn graph.
Thank you!