Grothendieck Inequalities, XOR games, and Communication Complexity

Troy Lee
Rutgers University

Joint work with: Jop Briët, Harry Buhrman, and Thomas Vidick
Overview

- Introduce XOR games, Grothendieck’s inequality, communication complexity, and their relation in the two-party case.

- Explain what of this relation survives in the three-party case.

- Final result will be that discrepancy method also lower bounds three-party quantum communication complexity with limited forms of entanglement.
XOR games

• Simple model of computing a function $f : \{-1, +1\}^n \times \{-1, +1\}^n \to \{-1, +1\}$.

• Verifier chooses inputs $x, y \in \{-1, +1\}^n$ with probability $\pi(x, y)$ and sends x to Alice, y to Bob.

• Without communicating, Alice outputs a bit $a_x \in \{-1, +1\}$ and Bob a bit b_y, aiming for $a_x b_y = f(x, y)$.

• Unless matrix $[f(x, y)]_{x, y}$ is rank one, will not always succeed. Measure performance

$$\beta(f \circ \pi) = \sum_{x, y} \pi(x, y) f(x, y) a_x b_y.$$
XOR games: basic observations

• As described above the model is deterministic. A convexity argument shows that model is unchanged if allow Alice and Bob to share randomness.

• The bias of a game \((f, \pi)\) is exactly the \(\infty \to 1\) norm of \(f \circ \pi\):

\[
\| A \|_{\infty \to 1} = \max_{x \in \{-1,+1\}^m} \max_{y \in \{-1,+1\}^n} x^t Ay = \max_y \ell_1(Ay).
\]

\[
\ell_\infty(y) \leq 1
\]
Entanglement is an interesting resource allowed by quantum mechanics. Already can see its effects in the model of XOR games.

Alice and Bob share a state $|\Psi\rangle \in H_A \otimes H_B$.

Now instead of choosing bits, Alice and Bob choose Hermitian matrices A_x, B_y with eigenvalues in $\{-1, +1\}$.

Expected value of the output on input x, y is given by

$$\langle \Psi | A_x \otimes B_y | \Psi \rangle$$
XOR games with entanglement

- The maximum bias in an XOR game \((f, \pi)\) with entanglement \(|\Psi\rangle\) is thus given by

\[
\beta_{\psi}^*(f \circ \pi) = \max_{\{A_x\},\{B_y\}} \sum_{x,y} f(x, y) \pi(x, y) \langle \Psi | A_x \otimes B_y | \Psi \rangle
\]

- The bias is \(\beta^*(f \circ \pi) = \max_{|\psi\rangle} \beta_{|\psi\rangle}(f \circ \pi)\).
Tsirelson’s Characterization

Tsirelson gave a very nice vector characterization of XOR games with entanglement.

\[\beta^*(f \circ \pi) = \max_{u_x, v_y} \sum_{x, y} \pi(x, y) f(x, y) \langle u_x, v_y \rangle. \]

That the RHS upper bounds the LHS is easy to see:

\[\langle \Psi | A_x \otimes B_y | \Psi \rangle = \langle u_x, v_y \rangle \]

where \(u_x = A_x \otimes I | \Psi \rangle \), and \(v_y = I \otimes B_y | \Psi \rangle \) are unit vectors.
Example: CHSH game

- What physicists call the CHSH game, a.k.a. the 2-by-2 Hadamard matrix. Goal is for $a_x b_y = x \land y$. Under the uniform distribution, game matrix looks as follows:

$$\frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

- Classically best thing to do is always output 1. Achieves bias $\frac{1}{2}$.
Example: CHSH game

- With entanglement can achieve bias $\sqrt{2}/2$. Recall that

\[
\|A\|_{tr} = \max_{U,V \text{ unitaries}} \text{Tr}(UAV^*)
\]

\[
= \max_{\{u_x\},\{v_y\}} \sum_{x,y} A(x, y) \langle v_y, u_x \rangle
\]

\[
\leq \beta^*(A).
\]

- Trace norm of Hadamard matrix is $2\sqrt{2}$.
Grothendieck’s Inequality

• Hadamard example shows a gap of $\sqrt{2}$ between bias of a game with entanglement and without. How large can this gap be?

• Grothendieck’s Inequality shows this gap is at most constant

$$\sum_{x,y} A(x, y) \langle u_x, v_y \rangle \leq K_G \|A\|_{\infty \rightarrow 1}.$$

where $1.6770 \leq K_G \leq 1.7822$ [Lower: Davie, Reeds, Upper: Krivine].
Connection to Communication Complexity

• Upper bounds on the bias in an XOR game for f (under any distribution) imply lower bounds on the communication complexity of f.

• Proof: Say that f has deterministic communication complexity c. We design an XOR game for f where the players share a random string of length c which achieves bias 2^{-c}, for any distribution.

• Players interpret the random string as the transcript of their communication and look for inconsistencies.
Connection to Communication Complexity

• If Alice notices an inconsistency, she outputs a random bit. Same for Bob.

• If Alice does not notice an inconsistency, she outputs the answer given by the transcript. If Bob does not notice an inconsistency, he outputs 1.

• Let $P(x, y)$ denote the expectation of the output of this protocol on input (x, y).

$$
\beta(f \circ \pi) \geq \sum_{x,y} \pi(x, y) f(x, y) P(x, y) = \frac{1}{2c} \sum_{x,y} \pi(x, y) f(x, y)^2 = \frac{1}{2c}
$$
Bounded-error protocols

• The same idea also works if we start out with a communication protocol with bounded-error ϵ.

• Expected output of communication protocol will be between $[1 - 2\epsilon, 1]$ when $f(x, y) = 1$ and $[-1, -1 + 2\epsilon]$ when $f(x, y) = -1$.

• Plugging this into previous argument gives a bias at least $\frac{1 - 2\epsilon}{2c}$ under any distribution π, if f has bounded-error communication complexity c.

$$R_\epsilon(f) \geq \max_{\pi} \log \left(\frac{1 - 2\epsilon}{\beta(f \circ \pi)} \right).$$
Protocols with entanglement

• We can similarly relate the bias in an XOR game with entanglement to communication protocols with classical communication where the players share entanglement.

• In XOR game, players make same measurements on entangled state as in communication protocol, assuming communication from other player is given by shared random string.

\[R_\epsilon^*(f) \geq \max_{\pi} \log \left(\frac{1 - 2\epsilon}{\beta^*(f \circ \pi)} \right) \geq \max_{\pi} \log \left(\frac{1 - 2\epsilon}{\beta(f \circ \pi)} \right) - 1 \]
Protocols with entanglement and quantum communication

• Lower bounds on protocols with entanglement already imply lower bounds on protocols with quantum communication. It is known that $Q^*_\epsilon(f) \geq \frac{R^*_\epsilon(f)}{2}$.

• Idea is teleportation. If Alice and Bob share a Bell state $|00\rangle + |11\rangle$

Alice can transfer Bob a state $\alpha|0\rangle + \beta|1\rangle$ by doing local operations and communicating two classical bits which direct local operations to be done by Bob.
Discrepancy method

• What we have described is precisely the discrepancy method in communication complexity

• Discrepancy is usually formulated in terms of the cut norm

\[\|A\|_C = \max_{x \in \{0,1\}^m, y \in \{0,1\}^n} |x^t Ay|. \]

• Not hard to show that these are closely related

\[\|A\|_C \leq \|A\|_{\infty \rightarrow 1} \leq 4\|A\|_C. \]
Generalized discrepancy method

- General argument to leverage more out of the discrepancy method [Klauck, Razborov].

- Instead of showing that f itself has small bias under π, show that g has small bias under π and that f and g are correlated under π.

- Working out the bias that you get under this argument gives

$$Q^*_\epsilon(f) \geq \frac{1}{2} \max_{g,\pi} \log \left(\frac{\langle f, g \circ \pi \rangle - 2\epsilon}{\beta(g \circ \pi)} \right)$$

This bound is due to [Linial, Shraibman] who show it from the dual perspective.
How far do XOR games go?

• An XOR game has no communication. Surely these bounds can’t be good!

• Does not show tight bound for randomized complexity of disjointness. Here information theoretic techniques and corruption bounds do better.

• It does subsume a large class of “geometric” techniques [Linial, Shraibman].

• Generalized discrepancy bound is polynomially related to approximate rank [L, Shraibman].
Summary

• Upper bounds on bias in XOR games give rise to communication complexity lower bounds.

• Grothendieck’s inequality shows bias with entanglement can be at most constant factor larger than without.

• Implies that classical bias, or discrepancy, can be used to lower bound quantum communication complexity with entanglement.
Three-party case: NIH or NOF?

• Two popular models of multiparty complexity.

• We can transform a number-on-the-forehead problem into a number-in-the-hand problem.

• Alice gets input \((y, z)\), Bob \((x, z)\) and Charlie \((x, y)\). A tuple gets zero probability if pairs are not consistent—that is, if union of sets is more than 3 strings.

• Bias under such a probability distribution corresponds to normal notion of NOF discrepancy.
Three-party case: what carries over

- Classical XOR bias still corresponds to discrepancy method.

- Relationship between XOR bias and communication complexity still holds. In particular, showing upper bounds on XOR bias with entanglement $|\Psi\rangle$ gives lower bounds on communication complexity with entanglement $|\Psi\rangle$.

- But showing upper bounds on bias with entanglement becomes much harder.
Three-party case: previous work

- Many complications arise in the three-party case . . .

- Pérez-García et al. give an example of a three-party XOR game where the ratio between bias with entanglement and without is unbounded.

- They also show that when the entanglement is of a special form known as GHZ state, there is at most a constant gap.

- What kinds of states allow for unbounded gaps?
Three-party case: why so different?

• In three-party case we no longer have a nice vector characterization analogous to Tsirelson.

• Also multilinear extensions of Grothendieck’s inequality do not always hold.

• As inner product can be viewed as a linear functional on $H_A \otimes H_B$, multilinear extensions of Grothendieck look at linear functionals on $H_A \otimes H_B \otimes H_C$.

• Approach: look at the linear functional “induced” by sharing entanglement $|\Psi\rangle$ and see if corresponding Grothendieck inequality holds.
Our contributions

• We simplify the proof of the GHZ case.

• We enlarge the class of states for which we can show a constant gap to Schmidt states.

• We show how a generalization of Grothendieck’s inequality due to Carne can be used to allow subsets of players to share GHZ states.

• This allows us to show that the generalized discrepancy method also lower bounds multiparty quantum communication complexity with shared entanglement of the above patterns. Extends a result of [L, Schechtman, Shraibman] who show this for quantum communication but cannot handle entanglement.
Generalized discrepancy method

• This gives a way to port old lower bounds to more powerful models.

• Especially nice in the number-on-the-forehead model where all lower bounds (in the general model) can be shown by the generalized discrepancy method.

• Examples: Lower bound of $n/2^{2k}$ for k-party generalized inner product function [Babai-Nisan-Szegedy]. Lower bound of $n^{1/(k+1)}/2^{2k}$ for disjointness function [L-Shraibman, Chattopadhyay-Ada].
Multilinear generalization of Grothendieck’s inequality

- The most naive extension of Grothendieck’s inequality does hold. Consider a generalized inner product

\[\langle u, v, w \rangle = \sum_i u(i)v(i)w(i). \]

- As was first shown by Blei and later simplified and improved by Tonge, there is a constant \(C \) such that for any tensor \(M \)

\[
\sum_{x,y,z} M(x, y, z) \langle u_x, v_y, w_z \rangle \leq C \max_{a_x, b_y, c_z \in \{-1, +1\}} \sum_{x,y,z} M(x, y, z) a_x b_y c_z.
\]
XOR bias with GHZ state

• GHZ state $|\Psi\rangle \in H_A \otimes H_B \otimes H_C$ where $|\Psi\rangle = \frac{1}{\sqrt{d}} \sum_{i=1}^{d} |i\rangle |i\rangle |i\rangle$.

• Fix Hermitian matrices with eigenvalues in $\{-1, +1\}$ which maximize bias. Bias in a game with shared GHZ state is given by

$$\beta^*_{|\Psi\rangle}(f \circ \pi) = \frac{1}{d} \sum_{x_1, x_2, x_3} (f \circ \pi)(x_1, x_2, x_3) \langle \Psi | A(x_1) \otimes B(x_2) \otimes C(x_3) | \Psi \rangle.$$

• Let $M = f \circ \pi$. Writing out definition of GHZ state, the above equals

$$\frac{1}{d} \sum_{x_1, x_2, x_3} M(x_1, x_2, x_3) \sum_{i, j=1}^{d} \langle i | A(x_1) | j \rangle \langle i | B(x_2) | j \rangle \langle i | C(x_3) | j \rangle.$$
XOR bias with GHZ state

From the last slide we have

\[
\frac{1}{d} \sum_{x_1, x_2, x_3} M(x_1, x_2, x_3) \sum_{i, j = 1}^{d} \langle i | A(x_1) | j \rangle \langle i | B(x_2) | j \rangle \langle i | C(x_3) | j \rangle = \\
\frac{1}{d} \sum_{i = 1}^{d} \sum_{x_1, x_2, x_3} M(x_1, x_2, x_3) \sum_{j = 1}^{d} \langle i | A(x_1) | j \rangle \langle i | B(x_2) | j \rangle \langle i | C(x_3) | j \rangle \\
\leq \max_{u(x_1), v(x_2), w(x_3)} \sum_{x_1, x_2, x_3} M(x_1, x_2, x_3) \langle u(x_1), v(x_2), w(x_3) \rangle.
\]
Extension to Schmidt states

- We can build on this argument to show a similar result when the entanglement is of the form

\[|\Psi\rangle = \sum_{i=1}^{d} \alpha_i |\sigma_i\rangle |\phi_i\rangle |\chi_i\rangle \]

for orthonormal sets \{\sigma_i\}, \{\phi_i\}, \{\chi_i\}.

- In the bipartite case, every state can be so expressed (by SVD). Not so in tripartite case!

- Essentially proof works by reducing this case to convex combination of GHZ-like states.
Carne’s theorem and combining states

• Roughly speaking, Carne’s theorem gives a way to compose Grothendieck inequalities.

• Example: $H_A = H^0_A \otimes H^1_A$ and $u_x = u^0_x \otimes u^1_x$. Define

 $$\phi(u_x, v_y, w_z) = \langle u^0_x, v^0_y \rangle \langle u^1_x, w^0_z \rangle \langle v^1_y, w^1_z \rangle.$$

• We can use this theorem to show that even when k-many coalitions of up to r-players each share a GHZ state, there is at most a constant gap in the bias with entanglement and without. Constant goes like $O(2^{kr})$.

Open questions

- How powerful is entanglement for communication complexity in the multiparty case?

- Can we leverage separation of Pérez-García et al. in XOR game bias into a separation for a communication problem?

- Obtain a nice classification of what states lead to functionals for which we have Grothendieck inequalities.