Complexity of Circuit Satisfiability

Ramamohan Paturi

University of California, San Diego
jointly with Pavel Pudlák, Czech Academy of Sciences

November 9, 2009
Overview

- Exact Algorithms
- Examples of Recent Progress
- Complexity Theory of Exact Algorithms
- Circuit Satisfiability Resource Trade-offs
Exact Algorithms for **NP**-complete Problems

- Exact solutions, worst-case complexity
Exact Algorithms for \textbf{NP}-complete Problems

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research
Exact Algorithms for \textbf{NP}-complete Problems

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research
- Improvements over exhaustive search
Exact Algorithms for \textbf{NP}-complete Problems

- Exact solutions, worst-case complexity
- Exponential-time algorithms, an active field of research
- Improvements over \textit{exhaustive search}
- Goal: Limitations
Exact Complexity — \textbf{NP} Parameterization

Two parameters with each instance: size of input and a complexity parameter
Exact Complexity — NP Parameterization

- Two parameters with each instance: size of input and a complexity parameter
- Natural and robust complexity parameters
 1. Satisfiability: \(n \), the number of variables and \(m \), input size
 2. Hamiltonian path: \(n \), the number of vertices and \(m \), size of the graph
Exact Complexity — **NP Parameterization**

- Two parameters with each instance: size of input and a complexity parameter
- Natural and robust complexity parameters
 1. Satisfiability: n, the number of variables and m, input size
 2. Hamiltonian path: n, the number of vertices and m, size of the graph
- **NP:**
 - $L \in \textbf{NP}$ if $\exists p(.), \Phi(.,.)$ such that $x \in L$ iff $\exists y, |y| \leq p(x), \Phi(x, y)$
 - where $\Phi(x, y)$ is a poly-time decidable relation. and $p(x)$ is poly-time computable and polynomially bounded
Two parameters with each instance: size of input and a complexity parameter

Natural and robust complexity parameters

1. Satisfiability: n, the number of variables and m, input size
2. Hamiltonian path: n, the number of vertices and m, size of the graph

NP:

$L \in \mathbf{NP}$ if $\exists p(\cdot), \Phi(\cdot, \cdot)$ such that

$x \in L \iff \exists y, |y| \leq p(x), \Phi(x, y)$

where $\Phi(x, y)$ is a poly-time decidable relation. and $p(x)$ is poly-time computable and polynomially bounded

Canonical parameterization for \mathbf{NP}: $\mathbf{NP}(n, m)$

$|x|$, size of the input and $p(x)$, the complexity parameter
Nontrivial Exact Algorithms

- \(\textbf{NP}(n, m) \)

- \textbf{Trivial exact algorithms:} worst-case time complexity — \(O(\text{poly}(m)2^n) \)

- \textbf{Nontrivial exact algorithms:} worst-case time complexity — \(O(\text{poly}(m)2^{\mu n}), \mu < 1 \) may depend on the class of instances.

- Also known as \textbf{moderately exponential-time} or \textbf{improved exponential-time algorithms}
Examples

- Example 1: TSP
 - Input $G = (V, E, W)$, $|V| = n$, $|E| = m$, with $p(G) = \log n!$
 - Held-Karp dynamic programming algorithm with $O(n^2 2^n)$ is nontrivial.

- Example 2: k-SAT
 - Input CNF F where each clause has at most k literals
 - $|F| = m$, $p(F) = n$, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^n (1 - c/k)$ for $c > 1$.

Open Problem: Does there exist a SUBEXP algorithm for k-SAT? If not, what are the best possible exponents?
Examples

- Example 1: TSP
 - Input $G = (V, E, W)$, $|V| = n$, $|E| = m$, with $p(G) = \log n$!
 - Held-Karp dynamic programming algorithm with $O(n^22^n)$ is nontrivial.
- Open Problem: Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.

- Example 2: k-SAT
 - Input CNF F where each clause has at most k literals.
 - $|F| = m$, $p(F) = n$, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^n(1 - c/k)$ for $c > 1$.

- SUBEXP: for every $\epsilon > 0$, \exists algorithm with time complexity $O(poly(|x|)2^{\epsilon p(x)})$
- Open Problem: Does there exist a SUBEXP algorithm for k-SAT? If not, what are the best possible exponents?
Examples

- **Example 1: TSP**
 - Input $G = (V, E, W)$, $|V| = n$, $|E| = m$, with $p(G) = \log n$!
 - Held-Karp dynamic programming algorithm with $O(n^2 2^n)$ is nontrivial.

- **Open Problem:** Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.

- **Example 2: k-SAT**
 - Input CNF F where each clause has at most k literals.
 - $|F| = m$, $p(F) = n$, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^{n(1-c/k)}$ for $c > 1$.
Examples

- **Example 1: TSP**
 - Input $G = (V, E, W)$, $|V| = n$, $|E| = m$, with $p(G) = \log n$!
 - Held-Karp dynamic programming algorithm with $O(n^2 2^n)$ is nontrivial.

- **Open Problem:** Find a nontrivial exact algorithm for TSP (or Hamiltonian path) under the complexity parameter, n, the number of vertices.

- **Example 2: k-SAT**
 - Input CNF F where each clause has at most k literals.
 - $|F| = m$, $p(F) = n$, the number of variables
 - Best-known algorithms with nontrivial upper bounds of the form $2^{n(1-c/k)}$ for $c > 1$.

- **SUBEXP:** for every $\epsilon > 0$, \exists algorithm with time complexity $O(\text{poly}(|x|)2^{\epsilon p(x)})$

- **Open Problem:** Does there exist a SUBEXP algorithm for k-SAT?
 - If not, what are the best possible exponents?
Why Exact Algorithms?

- Certain applications will benefit from exact solutions even for moderate size parameters.
- Approximation algorithms are not always satisfactory. Moreover, it is hard to approximate for some problems.
- Constant factor improvements in the exponent will lead to similar improvements in the size of computationally feasible inputs.
- Designing improved exact algorithms is leading to new algorithmic techniques and analyses.
- Refined understanding of the complexity relationships among \textbf{NP}-hard problems.
- Much work has been on heuristic algorithms for 3-SAT and other problems which can solve fairly large instances.
 - Rigorous analysis of heuristics
 - What are the hard instances?

Paturi/Pudlák | Complexity of Circuit Satisfiability
Maximum Independent Set

- Given $G = (V, E)$, find a maximum size independent set with the number of vertices as the complexity parameter.
- $2^{0.334n}$ algorithm in polynomial space — Tarjan and Trojanowski 1977
- $2^{0.304n}$ algorithm in polynomial space — T. Jian 1986
- $2^{0.296n}$ in polynomial space and $2^{0.276n}$ in exponential space — Robson 1986
- $2^{0.25n}$ — Robson 2001, relatively long, partially computer-generated proof in a technical report
- $2^{0.287n}$ in polynomial space using measure and conquer analysis technique — Fomin, Grandoni, and Kratsch 2006
- Better bounds are known for sparse graphs.
k-SAT

- Decide if given a k-CNF Φ is satisfiable. n, the number of variables is the complexity parameter.
- Best known bounds for small values of k: 2^{n}

<table>
<thead>
<tr>
<th>k</th>
<th>unique-k-SAT</th>
<th>k-SAT</th>
<th>k-SAT</th>
<th>k-SAT</th>
<th>k-SAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.386...</td>
<td>0.521...</td>
<td>0.415...</td>
<td>0.409...</td>
<td>0.404...</td>
</tr>
<tr>
<td>4</td>
<td>0.554...</td>
<td>0.562...</td>
<td>0.584...</td>
<td></td>
<td>0.559...</td>
</tr>
<tr>
<td>5</td>
<td>0.650...</td>
<td>0.678...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.711...</td>
<td>0.736...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Paturi, Pudlák, Saks, Zane</td>
<td>Schöning</td>
<td>Rolf, ...</td>
<td>Iwama, Tamaki</td>
<td></td>
</tr>
</tbody>
</table>

- Best bound for $k \geq 5$: $2^{(1-\mu_k/(k-1))n}$ with $\mu_k \approx 1.6$ for large k.
Graph Coloring to Tutte Polynomial

- Dramatic progress on k-colorability, chromatic number, and Tutte polynomial — **the power of inclusion-exclusion**
- All can be solved in 2^n time and in 2^n space — Björklund, Husfeldt, Kaski, Koivisto 2006-2008
- Tutte polynomial can also be solved in 3^n time and polynomial space
- Chromatic number can be computed in $2^{1.167n}$ time in polynomial space
- 3-colorability: $2^{0.41n}$ in polynomial space — Beigel and Eppstein, 2005
- 4-colorability: $2^{0.807n}$ in polynomial space — Byskov, 2004
Other Problems and Techniques

- Minimum dominating set, treewidth, maximum cut, minimum feedback vertex set, ...
- Pruning the search tree (Davis-Putnam, Branch and Reduce)
- Dynamic Programming
- Local search
- Measure and conquer
- Inclusion-exclusion, Fourier transform, Möbius inversion
- Color coding
- Group algebra
- Matrix multiplication
- Exponential-time divide-and-conquer
- Sieve algorithms
Which problems have such improved algorithms?
Is there a c^n algorithm for TSP with $c < 2$?
Which problems have such improved algorithms?
- Is there a c^n algorithm for TSP with $c < 2$?
- Can these improvements extend to arbitrarily small exponents?
 - Is 3-SAT in SUBEXP? How about 3-coloring?
Exact Complexity

- Which problems have such improved algorithms?
 Is there a c^n algorithm for TSP with $c < 2$?

- Can these improvements extend to arbitrarily small exponents?
 Is 3-SAT in \textsc{Subexp}? How about 3-coloring?

- Can we prove improvements beyond a certain point are not possible (at least under some complexity assumption)?
 Lower bounding the exponent for 3-SAT under suitable complexity assumptions?
Which problems have such improved algorithms?
Is there a c^n algorithm for TSP with $c < 2$?

Can these improvements extend to arbitrarily small exponents?
Is 3-SAT in SUBEXP? How about 3-coloring?

Can we prove improvements beyond a certain point are not possible (at least under some complexity assumption)?
Lower bounding the exponent for 3-SAT under suitable complexity assumptions?

Is progress on different problems connected? If k-coloring has a c^n algorithm, can we prove k-SAT has a d^n algorithm? c and d are independent of k.
Approach

- Consider natural, though restricted, models of computations
- Limitations
- CircuitSat
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms

What is the best success probability achievable in OPP?

SAT problems can be solved with probability $2^{-n} + O(lg n)$ in OPP.

Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in n^2 time using the inclusion-exclusion principle.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms

What is the best success probability achievable in OPP?

SAT problems can be solved with probability $2^{-n} + O(lg n)$ in OPP.

Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in n^2 time using the inclusion-exclusion principle.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein

What is the best success probability achievable in OPP?

SAT problems can be solved with probability $2^{-n} + O(\lg n)$ in OPP.

Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in n^2 time using the inclusion-exclusion principle.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation

What is the best success probability achievable in OPP?

SAT problems can be solved with probability $2^{-n} + O(\lg n)$ in OPP.

Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in n^2 time using the inclusion-exclusion principle.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?

SAT problems can be solved with probability $2^{-n} + O(\lg n)$ in OPP.

Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in $n^2 \cdot 2^n$ time using the inclusion-exclusion principle.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?
- SAT problems can be solved with probability $2^{-n+O(\lg n)}$ in OPP.
OPP: Two Resource Computational Model

- OPP: one-sided error probabilistic polynomial-time algorithms
- Includes several Davis-Putnam style backtracking algorithms, local search algorithms
- Several algorithms couched as exponential-time can in fact be seen as OPP algorithms based on an observation by Eppstein
- OPP: space efficiency, parallelization, speed-up by quantum computation
- What is the best success probability achievable in OPP?
- SAT problems can be solved with probability $2^{-n+O(lg n)}$ in OPP.
- Hamiltonian path problem can be solved with probability $1/n!$ in OPP, whereas it can be solved in n^22^n time using the inclusion-exclusion principle.
Consider \(\lg t + \lg 1/p \) for time \(t \) and success probability \(p \).

For what problems, does this quantity decrease with time?

If one can present evidence that Hamiltonian path cannot achieve \(c^{-n} \) success probability in OPP, then we provide evidence for the relative power of algorithmic paradigms — for example, exponential-time may be strictly advantageous.

On the other hand, \(c^{-n} \) OPP algorithm for Hamiltonian path would be exciting.
Possibility of arbitrarily small exponents for various \textbf{NP}-complete problems is one and the same.
Prior Work

- Possibility of arbitrarily small exponents for various NP-complete problems is one and the same.
- $\text{SNP} \subseteq \text{SUBEXP}$ if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
Prior Work

- Possibility of arbitrarily small exponents for various *NP*-complete problems is one and the same.
- \(\text{SNP} \subseteq \text{SUBEXP} \) if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
- Some SERF-complete languages for SNP: \(k\text{-SAT} \), \(k\text{-coloring} \)
Prior Work

- Possibility of arbitrarily small exponents for various \textbf{NP}-complete problems is one and the same.

- \textbf{SNP} \subseteq \textbf{SUBEXP} if any \textbf{SERF}-complete problem for \textbf{SNP} is in \textbf{SUBEXP} — Impagliazzo, Paturi and Zane 1998

- Some \textbf{SERF}-complete languages for \textbf{SNP}: k-SAT, k-coloring

- All are equivalent as far as the existence of subexponential time algorithms is concerned.
Prior Work

- Possibility of arbitrarily small exponents for various NP-complete problems is one and the same.
- SNP ⊆ SUBEXP if any SERF-complete problem for SNP is in SUBEXP — Impagliazzo, Paturi and Zane 1998
- Some SERF-complete languages for SNP: k-SAT, k-coloring
- All are equivalent as far as the existence of subexponential time algorithms is concerned.
- Key tool: complexity parameter preserving reductions via Sparsification Lemma
Exponential Time Hypothesis

\[s_k = \inf \{ \delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT} \} \]

\[s_\infty = \lim_{k \to \infty} s_k \]
Exponential Time Hypothesis

- \(s_k = \inf\{\delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT}\} \)
- \(s_\infty = \lim_{k \to \infty} s_k \)
- \textbf{ETH} — Exponential Time Hypothesis: \(s_3 > 0 \)

ETH implies that \((d, 2)\)-CSP takes \(d^{cn}\) time where \(c\) is an absolute constant. Traxler 2008

Other similar conditional lower bounds by Marx, Williams, Patrascu

Open Problems: Assuming ETH or other suitable assumption, prove a specific lower bound on \(s_3 \)

Assuming \(s_\infty = 1 \), can we prove a \(2^n \) lower bound on \(k\)-coloring?

Paturi/Pudlák Complexity of Circuit Satisfiability
Exponential Time Hypothesis

- $s_k = \inf \{ \delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT} \}$
- $s_\infty = \lim_{k \to \infty} s_k$
- **ETH** — Exponential Time Hypothesis: $s_3 > 0$
- **ETH** implies that s_k increases infinitely often — Impagliazzo and Paturi, 1999
- In other words, $\forall k, \exists k' > k, s_{k'} > s_k$.
Exponential Time Hypothesis

- $s_k = \inf \{ \delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT} \}$
- $s_\infty = \lim_{k \to \infty} s_k$
- **ETH** — Exponential Time Hypothesis: $s_3 > 0$
- **ETH** implies that s_k increases infinitely often — Impagliazzo and Paturi, 1999
- In other words, $\forall k, \exists k' > k, s_{k'} > s_k$.
- **ETH** implies that $(d, 2)$-CSP takes d^{cn} time where c is an absolute constant. Traxler 2008
- Other similar conditional lower bounds by Marx, Williams, Patrascu
Exponential Time Hypothesis

- \(s_k = \inf \{ \delta | \exists 2^{\delta n} \text{ algorithm for } k\text{-CNF SAT} \} \)
- \(s_\infty = \lim_{k \to \infty} s_k \)
- **ETH** — Exponential Time Hypothesis: \(s_3 > 0 \)
- **ETH** implies that \(s_k \) increases infinitely often — Impagliazzo and Paturi, 1999
- In other words, \(\forall k, \exists k' > k, s_{k'} > s_k \).
- **ETH** implies that \((d, 2)\text{-CSP}\) takes \(d^c n\) time where \(c\) is an absolute constant. Traxler 2008
- Other similar conditional lower bounds by Marx, Williams, Patrascu
- Open Problems: Assuming **ETH** or other suitable assumption, prove
 - a specific lower bound on \(s_3 \)
 - \(s_\infty = 1 \)
 - Assuming \(s_\infty = 1 \), can we prove a \(2^n \) lower bound on \(k\)-coloring?
C — the family of non-uniform probabilistic circuits
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- $\Pr[C(y, *) = b]$ — probability C outputs b for the input y
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- $\Pr[C(y, *) = b]$ — probability C outputs b for the input y
- CircuitSat — the circuit satisfiability problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0, 1\}^{n(D)}$ such that D on variable setting y outputs 1.
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- $\Pr[C(y, \ast) = b]$ — probability C outputs b for the input y
- **CircuitSat** — the circuit satisfiability problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0, 1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family \mathcal{F} of circuits for deciding **CircuitSat** — $\{F_{n,m}|n, m \geq 1\}$, indexed by size of the input circuit and the number of its variables
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- $\Pr[C(y, \ast) = b]$ — probability C outputs b for the input y
- **CircuitSat** — the circuit satisfiability problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0, 1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family \mathcal{F} of circuits for deciding **CircuitSat** —
 \{$F_{n,m}|n, m \geq 1\}$, indexed by size of the input circuit and the number of its variables
- A circuit family $\mathcal{F} = \{C_{n,m}\}$ decides **CircuitSat** with success probability $p(n)$ — for all input circuits D such that $n(D) = n$ and $y = \text{desc}(D)$
 - $\Pr[F_{n,m}(y, \ast) = 1] \geq p(n)$ if D is satisfiable
 - $\Pr[F_{n,m}(y, \ast) = 0] = 1$ otherwise
Probabilistic Circuits and Circuit Satisfiability

- \mathcal{C} — the family of non-uniform probabilistic circuits
- For $C \in \mathcal{C}$: n — number of variables; complexity parameter, partitioned as input and random variables, size — counts of gates
- $\Pr[C(y, \ast) = b]$ — probability C outputs b for the input y
- CircuitSat — the circuit satisfiability problem: given an encoding of $D \in \mathcal{C}$, does there exist a $y \in \{0, 1\}^{n(D)}$ such that D on variable setting y outputs 1.
- Family \mathcal{F} of circuits for deciding CircuitSat — $\{F_{n,m}|n, m \geq 1\}$, indexed by size of the input circuit and the number of its variables
- A circuit family $\mathcal{F} = \{C_{n,m}\}$ decides CircuitSat with success probability $p(n)$ — for all input circuits D such that $n(D) = n$ and $y = \text{desc}(D)$
 - $\Pr[F_{n,m}(y, \ast) = 1] \geq p(n)$ if D is satisfiable
 - $\Pr[F_{n,m}(y, \ast) = 0] = 1$ otherwise
- Success probability of \mathcal{F}: $p(n) \geq \inf_{m,y} \Pr[F_{n,m}^y(z) = 1]$.
$F_{n,m}(y, z) = \text{desc}(D)$

Probabilistic Circuit for \textbf{CircuitSat}
Complexity of Circuit Satisfiability

- Complexity of \mathcal{F} for deciding CircuitSat for circuits with n inputs — $\lg(1/p(n))/n$
Complexity of Circuit Satisfiability

- Complexity of \mathcal{F} for deciding CircuitSat for circuits with n inputs — $\lg(1/p(n))/n$
- The complexity of \mathcal{F} for deciding CircuitSat — $E_{\text{CircuitSat}}(\mathcal{F}) = \limsup \lg(1/p(n))/n$
Complexity of Circuit Satisfiability

- Complexity of \mathcal{F} for deciding **CircuitSat** for circuits with n inputs — $\lg(1/p(n))/n$

- The complexity of \mathcal{F} for deciding **CircuitSat** —

 $E_{\text{CircuitSat}}(\mathcal{F}) = \limsup \frac{\lg(1/p(n))}{n}$

- The complexity of deciding **CircuitSat** by $f(n, m)$-bounded probabilistic circuit families —

 $\inf\{\varepsilon | \exists$ a f-bounded \mathcal{F} such that $E_{\text{CircuitSat}}(\mathcal{F}) \leq \varepsilon \}$.
Exponential Amplification Lemma

Lemma

Exponential Amplification Lemma: Let F be an f-bounded family for some $f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{R}$ such that the success probability is $2^{-\delta n}$ for $0 < \delta < 1$. Then there exists a g-bounded circuit family G such that $E_{\text{CircuitSat}}(G) < \delta^2$ where $g(n, m) = O(f([\delta n] + 5, \tilde{O}(f(n, m))))$.

Paturi/Pudlák Complexity of Circuit Satisfiability
Picture 1: Probabilistic Circuit $F_{n,m}$
Picture 2: Specialization of $F_{n,m}$
$F_{n,m}$

$pseudorandom \text{ bits}$

$J^{t,w}(x) = (T^t)^{-1}(wx)$

input (x)

desc(D)

$H(x) = F_{n,m}^{\text{desc}(D)}(J^{t,w}(x))$

Picture 3: $H(x) = F_{n,m}^{\text{desc}(D)}(J^{t,w}(x))$
\[s = \lceil \delta n \rceil + 5 \]
\[\text{desc}(H) = \text{PrepCkt}(F_{n,m}, \text{desc}(D), t, w) \]
\[H(x) = F_{n,m}^{\text{desc}(D)}(J_{t,w}(x)) \]

Picture 2: Circuit \(G_{n,m} \)
Theorem

If CircuitSat can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that CircuitSat(n, m) (and consequently NP(n, m)) can be decided by deterministic circuits of size $2^{O(n^\mu \log^{1-\mu} m)}$.
Theorem

If \textbf{CircuitSat} can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that \textbf{CircuitSat}(n, m) (and consequently \textbf{NP}(n, m)) can be decided by deterministic circuits of size $2^{O(n^\mu \lg^{1-\mu} m)}$.

- The consequence amounts to 2^{n^μ} size deterministic circuits for \textbf{CircuitSat} for polynomial size circuits.
Theorem

If CircuitSat can be decided with probabilistic circuits of size m^k for some k with success probability $2^{-\delta n}$ for $\delta < 1$, then there exists a $\mu < 1$ depending on k and δ such that CircuitSat(n, m) (and consequently NP(n, m)) can be decided by deterministic circuits of size $2^{O(n^\mu \lg^{1-\mu} m)}$.

- The consequence amounts to 2^{n^μ} size deterministic circuits for CircuitSat for polynomial size circuits.
- If $m = 2^{o(n)}$, CircuitSat can be decided by deterministic circuits of size $2^{o(n)}$ — considered implausible — contradicts ETH.
- Also implies that $W[P]$ is fixed parameter tractable.
Results: Quasilinear Size Circuits

Theorem

If \textbf{CircuitSat} can be decided with probabilistic circuits of size $\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then \textbf{CircuitSat}(n, m) (and consequently $\textbf{NP}(n, m)$) can be decided by deterministic circuits of size $O(\text{poly}(m)n^{O(\lg \lg m)})$.

- The consequence is very close to the statement $\textbf{NP} \subseteq \textbf{P}/\text{poly}$.
Results: Subexponential Size Circuits

Theorem

If CircuitSat can be decided with probabilistic circuits of size $2^{o(n)} \tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n, m) (and consequently NP(n, m)) can be decided by deterministic circuits of size $2^{o(n)} \text{poly}(m)$.

The consequence of the theorem implies that CircuitSat can be solved in $2^{o(n)} \text{poly}(m)$ size deterministic circuits for polynomial size circuits (m is polynomial in n), which contradicts ETH.
Theorem

If CircuitSat can be decided with probabilistic circuits of size $2^{o(n)}\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then CircuitSat(n, m) (and consequently NP(n, m)) can be decided by deterministic circuits of size $2^{o(n)}\text{poly}(m)$.

- Apply the Exponential Amplification Lemma a number of times that grows with n.
Results: Subexponential Size Circuits

Theorem

If \textbf{CircuitSat} can be decided with probabilistic circuits of size $2^{o(n)}\tilde{O}(m)$ with success probability $2^{-\delta n}$ for $\delta < 1$, then \textbf{CircuitSat}(n, m) (and consequently \textbf{NP}(n, m)) can be decided by deterministic circuits of size $2^{o(n)}\text{poly}(m)$.

- Apply the Exponential Amplification Lemma a number of times that grows with n.
- The consequence of the theorem implies that \textbf{CircuitSat} can be solved in $2^{o(n)}\text{poly}(m)$ size deterministic circuits for polynomial size circuits (m is polynomial in n), which contradicts ETH.
Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\text{CircuitSat}}(\text{explinear}) \geq 1 - \alpha - \varepsilon$ or $\text{CircuitSat}(n, m)$ (and consequently $\text{NP}(n, m)$) can be decided by circuits of size $2^n/(1+\varepsilon/\alpha)\text{poly}(m)$.

Standard correctness probability boosting would give circuits of size $2^{(1-\varepsilon)n}\text{poly}(m)$ size.

Paturi/Pudlák Complexity of Circuit Satisfiability
Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\text{CircuitSat}}(\text{explinear}) \geq 1 - \alpha - \varepsilon$ or $\text{CircuitSat}(n, m)$ (and consequently $\text{NP}(n, m)$) can be decided by circuits of size $2^{n/(1+\varepsilon/\alpha)}\text{poly}(m)$.

- If success probability for CircuitSat is better than $2^{-(1-\alpha)n+o(n)}$, then CircuitSat can be decided by circuits of size $2^{cn}\text{poly}(m)$ with $c = 1/(1 + \varepsilon/\alpha) < 1$.
- Standard correctness probability boosting would give circuits of size $2^{(1-\varepsilon)n}\text{poly}(m)$ size.
Results: Small Exponential Size Circuits

Theorem

For every $\alpha, \varepsilon > 0$, either $E_{\text{CircuitSat}}(\text{explinear}) \geq 1 - \alpha - \varepsilon$ or $\text{CircuitSat}(n, m)$ (and consequently $\text{NP}(n, m)$) can be decided by circuits of size $2^{n/(1+\varepsilon/\alpha)\text{poly}(m)}$.

- If success probability for CircuitSat is better than $2^{-(1-\alpha)n+o(n)}$, then CircuitSat can be decided by circuits of size $2^{cn\text{poly}(m)}$ with $c = 1/(1 + \varepsilon/\alpha) < 1$.
- Standard correctness probability boosting would give circuits of size $2^{(1-\varepsilon)n\text{poly}(m)}$ size.
Open Problems

- Weaken the hypotheses for CircuitSat resource trade-off bounds to $\text{NP} \not\subseteq \text{P/poly}$.
Open Problems

- Weaken the hypotheses for CircuitSat resource trade-off bounds to $\text{NP} \not\subset \text{P/poly}$.
- Does graph coloring or the Hamiltonian path problem have probabilistic polynomial time algorithms with success probability c^{-n}?
Open Problems

- Weaken the hypotheses for CircuitSat resource trade-off bounds to NP \not\subseteq P/poly.
- Does graph coloring or the Hamiltonian path problem have probabilistic polynomial time algorithms with success probability \(c^{-n}\)?
- Prove resource trade-off bounds for linear-size CircuitSat in polynomial size models under suitable complexity assumptions.
Thank You