Mathematical Theory of Solids: from Atomic to Macroscopic Scales

Weinan E
Princeton University
Fluids and solids: A comparison

Fluids: Fundamental model:
Navier-Stokes equation

\[
\begin{align*}
\begin{cases}
vt + (v \cdot \nabla)v + \nabla p &= \frac{1}{Re} \Delta v \\
\nabla \cdot v &= 0
\end{cases}
\end{align*}
\]

\[v(\cdot, t) = \text{velocity field at time } t.\]
Solids: fundamental model?

Linear elasticity:

$$\rho \frac{\partial^2 u}{\partial t^2} = (\lambda + \mu) \nabla (\nabla \cdot u) + \mu \Delta u$$

Nonlinear elasticity:

$$\rho \frac{\partial^2 u}{\partial t^2} = \nabla \cdot \nabla_A W(\nabla u)$$

Plasticity

......

\[y = x + u(x) \]

\[u(x) = \text{displacement} \]
Quantum many-body problem

\[V(R_1, R_2, \ldots, R_N) = E^*(R_1, R_2, \ldots, R_N) + \sum_{I \neq J} \frac{Z_I Z_J}{|R_I - R_J|} \]

\[R_I = \text{position of the } i\text{-th nucleus} \]

\[Z_I = \text{charge of the } i\text{-th nucleus} \]

\[E^* = \text{ground state energy of the electrons} \]

\[H = -\sum_i \frac{1}{2} \Delta r_i + \sum_{i < j} \frac{1}{|r_i - r_j|} + \sum_i v(r_i) \]

\[v(r_i) = -\sum_I \frac{Z_I}{|r_i - R_I|} \]

\[\psi = \psi(r_1, r_2, \ldots, r_M) \]
Dirac (1929)

The underlying physical laws necessary for the mathematical theory of a *large part of physics* and *the whole chemistry* are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble.
What do we take as the starting point?

1. Quantum many-body

2. Simplified quantum models (density function theory, tight-binding, etc.)

3. Classical potential
 - Lennard-Jones
 - Embedded Atom Model (EAM)

\[V(R_1, R_2, \ldots, R_N) = \sum_{I \neq J} V_0(|R_I - R_J|) \]

\[V_0(r) = 4\varepsilon \left(\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^6 \right) \]
FCC Stacking
Intrinsic Stacking Fault (SF)

\[\gamma_{sf} = \text{Stacking fault energy} \]

E. B. Tadmor, Technion – Israel Institute of Technology
Partial dislocations & stacking fault
Formation of an Extended Dislocation

E. B. Tadmor, Technion - Israel Institute of Technology
Two important themes

1. Geometry

- Crystal lattice: Cubic, BCC, FCC, HCP, Diamond, ...
- Lattice defects: stacking fault, dislocations

2. Physics

(a) Why selecting the particular lattice? (Quantum packing problem)

(b) Origin of cohesion: Why do atoms stick together?
 i. Molecular (van der Waals force)
 ii. Covalently-bonded (e.g. Si)
 iii. Metallic
 iv. Ionic (e.g. NaCl)
 v. Hydrogen-bonded
Lattice L
Gamma surface energy

\[\Gamma(x,y) = \text{energy per unit cell at the surface when the two half crystals are displaced uniformly by } (x,y) \]

Example: FCC lattice in (111) direction

Illustration: displacing two triangular lattices

\[\Gamma(x,y) = \sum_{i \in L_1, j \in L_2} V_0(r_i' - r_j), \quad r_i' = r_i + (x,y) \]

Observation: \(\Gamma \) has the symmetry of the lattice

\[G = \text{point group of triangular lattice} \]

\[= \{ I, R_{60}, R_x, R_y, \ldots \} \]
\(L^* \) = dual lattice (Fourier space)

= reciprocal lattice = triangular lattice

\[\Gamma(x, y) = \sum_{\text{orbits}} c_K O_K(x, y) \]

\(\{O_K\} \) are invariant under \(G \)

Leading order truncations give good approximation to \(\Gamma \).

Conclusion: Geometry "determines" \(\Gamma \).
What questions do we need to address?

1. Quantum packing problem:
 Why selecting the specific crystal structure?

2. Stability of crystals (nonlinear elastic regime)

3. Instability of crystals, defect formation

4. Defect structure and dynamics (isolated)

5. Defect-defect interactions, plasticity
Diamond lattice

\(\Gamma(x, y) \) nearly singular

Geometry tells little.

Physics (details of the atomic interaction) is important!
Nonlinear elastic regime
(E and Ming)

Cauchy-Born rule

$W(A, p) =$ energy of unit cell in the deformed,
(by A), and displaced (by p)
configuration.

$W_{CB}(A) = \min_{p} W(A, p)$

$I(v) = \int_{\Omega} \{W_{CB}(\nabla v) - f(x)v(x)\}dx \quad (*)$

$I_h(\{v_j\}) = V(y_1, \ldots, y_N) - \sum f(x_j)v_j \quad (**)\quad y_j = x_j + v_j$
Assumption A:

\[
\begin{pmatrix}
D_{AA}W(A,p), & D_{Ap}W(A,p) \\
D_{Ap}W(A,p), & D_{pp}W(A,p)
\end{pmatrix} > 0 \quad A = 0, \quad p = p_0
\]

Assumption B: "phonons"

\[
\omega_a(k) \geq \Lambda_1 |k| \\
\omega_0(k) \geq \frac{\Lambda_2}{\epsilon}
\]

\(k \in 1\text{st Brillouin zone}\)

Theorem: \((p \geq d = \text{dimension})\) \(\exists K, R\) such that if \(\|f\|_{L^p} \leq K\), then \(\exists\) unique solution of \((\ast)\), \(v = u_{CB}\), such that

\[\|u_{CB}\|_{W^{2,p}} \leq R\]

Theorem: \(\exists\) solution \(y\) of \((\ast\ast)\), such that

\[\|y - y_{CB}\|_1 \leq C\epsilon\]

\(y_{CB}(x) = x + u_{CB}(x), \|\cdot\|_1 = \text{discrete } H^1 \text{ norm}\)
Remarks

1. Result is sharp
 Classification of instability, if \(\| f \|_{L^p} > K \)
 Defect formation.

2. Result can be extended to dynamic problems.

3. Previous work of Blanc, LeBris and P.L. Lions. Assume \(y_j = x_j + u(x_j) \), \(u \) is smooth, and study limit of \(V \).

Example: Lennard-Jones potential, next nearest neighbor interaction

Case 1. Triangular lattice

Case 2. Square lattice
Summary

1. Atomistically-based mathematical theory of solids is both important and possible.

2. Geometry and physics themes helpful.
Reason: Solids are much more multi-scaled (and heterogeneous)

Atomic scale: Atoms, electrons
 → crystal lattice
 → lattice defects

Macroscopic: randomly packed grains

Hierarchy of structures
WebElements: the periodic table on the world-wide web
http://www.webelements.com/

Symbols and names: the symbols and names of the elements, and their spellings are those recommended by the International Union of Pure and Applied Chemistry (IUPAC - http://www.iupac.org). Names have yet to be proposed for the most recently discovered elements 118–120, 114, 116, and 118 as those used here are IUPAC's temporary systematic names. In the USA and some other countries, the spellings aluminium and cesium are normal while in the UK and elsewhere the common spellings are aluminium and cesium.

Group labels: the numeric system (1–18) used here is the current IUPAC convention.

Atomic weights (mean relative masses): Apart from the revised elements, these are the IUPAC 1995 values and given to 5 significant figures. Elements for which the atomic weight is given within square brackets have no stable nuclides and are represented by the element's longest lived isotope.

©2000 Dr Mark J Winter (WebElements Ltd and University of Sheffield, webelements@sheffield.ac.uk), All rights reserved. For updates to this table see http://www.webelements.com/webelements/support/mediadefaults.pdf. Version date: 24 October 2000.

colored by Ilene E