
Lecture 8

Kummer on Fermat’s Theorem

We return to Z(α), at first for α a cube-root of 1, thus the solution

α = cos(2π/3) + i sin(2π/3)

of
z2 + z + 1 = 0.

We saw that if p is a prime number that leaves the remainder 3 on division
by 3, then there is an integer a such that a2 + a + 1 is divisible by p. We
considered the greatest common divisor of a−α and p and discovered that it
had to be a number π such that p = ππ̄, thus it is one of the two factors of p.

Suppose now that n is any odd prime and that we take α to be

α = cos(2π/n) + i sin(2π/n),

thus a root of
Zn−1 + Zn−2 + · · ·+ Z + 1 = 0.

The domain Z(α) now consists of all numbers

a0 + a1α + a2α
2 + · · ·+ an−2α

n−2,

where the coefficients a0, a1, . . . , an−2 are integers, thus ordinary whole num-
bers.

Now just as we showed that for n = 3 and p ≡ 1 (mod 3), there is always
an integer a such that a2 +a+1 is divisible by p, we can show that if p leaves
the remainder 1 upon division by n, then there is an integer a such that

an−2 + an−3 + · · ·+ a2 + a + 1

is divisible by p. If the domain Z(α) possessed unique factorization, we could
expect that the greatest common divisor of a − α and p was again a prime
divisor π of p.

More precisely, there are n−1 symmetries of the domain Z(α), determined
by

σ1 : α→ α,

σ2 : α→ α2,

σ3 : α→ α3,

. . .

σn−1 : α→ αn−1,
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The norm of a number ξ is defined to be

ξ · σ2(ξ)σ3(ξ) . . . σn−1(ξ).

We can even expect that
Nπ = ±p.

Kummer’s first papers were on differential equations and infinite series,
but in one of his earliest papers on cyclotomy, he, on the assumption that
unique factorization exists in each domain Z(α), set about finding π for each
p. In a paper, written for a formal occasion and thus in Latin, on the complex
numbers formed from roots of unity and whole numbers, thus on the domain
Z(α), he sets about calculating π for p up to 1000 that leave the remainder
1 upon division by n. The first values of n are 3, 5, 7, 11, 13, 17, 19 and
23. Of course, if the domain does not possess unique factorization, then his
calculation will not lead to a well-defined result. He will not always arrive at
a well-defined greatest common divisor; he will not always arrive at a number
whose norm is p; and he will not always find a factorization of p into primes
of the domain Z(α). He tabulates his results, from which we see in particular
that for n = 23, there are five primes less than 1000 that cannot be factored.

The numbers in Z(α) beside the five last primes in Kummer’s tables have
the following norms.

47 472

139 1392

277 277 · 17159
461 47 · 967
967 9672

It appears that Kummer put the wrong element of Z(α) on the fourth line.
Perhaps someone would like to find the right one. The necessary calculations
are far easier now than in his day. Curiously, some reader, of the original jour-
nal article not of the collected works, appears to have corrected the preceding
line. The point is that these last five numbers are exceptions. He is unable
to find numbers in Z(α) of which any of these five numbers are norms. Their
squares or sometimes the products of two of them are, however, sometimes
norms.
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Maxime dolendum videtur, quod hæc numerorum realium virtus, ut in tac-
tores primos dissolvi possint, qui pro eodem numero semper iidem sint, non
eadem est numerorum complexorum, quæ si esset, tota hæc doctrina, quæ
magnis adhuc difficultatibus laborat, facile absolvi et ad finem perduci psset.
Eam ipsam ob causam numeri complexi, quos hic tractamus, imperfecti esse
videntur, et dubium inde oriri posset, utrum hi numeri complexis ceteris qui
fingi possint præferendi, an alii quærendi essent, qui in hac re fundamentali
analogiam cum numeris integris realibus servarent. Attamen hi numeri com-
plexi, qui unitatis radicibus et numeris integris realibus componuntur, non ex
arbitrio facti sunt, sed ex ipsa doctrina numerorum procreati, atque ipsorum
ea ratio est, ut in doctrina sectionis circuli et residuorum potestatum altiorum
ulterius promovenda iis carere nullo modo possimus.
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De numeris complexis, qui radicibus unitatis et numeris integris
realibus constant

Citation

We see with great sorrow that that virtue of ordinary numbers, that
they can be resolved into prime factors that for the same number are always
the same, is not possessed by complex numbers. If it were, all the theory,
that is so far beset with great difficulties, would be easy to develop and to
bring to completion. For this reason the complex numbers that we treat
here are seen to be imperfect, so that a doubt could arise, whether other
complex numbers that might be constructed are preferable, whether there
are others to be investigated that in this fundamental respect would preserve
the analogy with ordinary integers. Nevertheless those complex numbers that
are composed from roots of unity and ordinary integers are not constructed
arbitrarily, but are generated by the theory of numbers itself, which is indeed
their very source, so that in developing the theory of cyclotomy and of the
residues of higher powers we can in no manner neglect them.
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Kummer saves the day with the introduction of ideal factors. I shall not
give his definition, but a more modern one, which is simpler, but the wonder
and brilliance is gone. The proofs are also then farther to seek. I introduce
the modern definition out of expediency. We have little time left. If ξ is any
number in Z(α), then the collection of numbers µξ, µ being any other number
in Z(α) is such that if η and ζ are in this collection, then so are η + ζ and νη,
ν being an arbitrary number in Z(α). Thus

(A) µ1ξ + µ2ξ = (µ1 + µ2)ξ,

and

(B) ν(µξ) = (µν)ξ.

Our experience with the Euclidean algorithm, suggests that if, on the
other hand, we have any collection of numbers with the properties (A) and
(B), then it is in fact just the collection of multiples of some ξ by the numbers
of Z(α). Our experience is of course limited and leads to the wrong conclusion,
but what we can do is introduce for any collection satisfying (A) and (B) an
ideal number, of whose multiples the collection is imagined to exist. The value
of these ideal numbers is determined by the useful properties they possess.
Notice that every number in Z(α) determines an ideal number: the collection
of all its multiples. Moreover two numbers in Z(α) determine the same ideal
number if and only if they differ by a unit. Moreover Z(α) itself is an ideal
number, the collection of multiples of 1.

They can be multiplied. If a = {µ} and b = {ν} are two ideal numbers,
then c = ab consists of all numbers

µ1ν1 + µ2ν2 + . . . ,

the number of terms being arbitrary, but of course finite, and µi lying in a
and νi lying in b. If a were just the multiples of ξ and b just the multiples of
η, then c would just be the multiples of ξη. If we multiply an ideal number by
1, thus by Z(α), we just obtain the ideal number itself back. This said, the
notion of a prime ideal number is clear. An ideal number is prime if when it
is the product of two other ideal numbers,, one of these numbers is 1 and the
other necessarily then the ideal itself.

Kummer proves, first of all, that every number has a unique factorization
into ideal numbers, and expresses this theorem with a chemical analogy. We
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might suggest nowadays that ideal numbers are like the physicists quarks,
however Kummer’s analogy is more explicit and reflects better his actual
construction

“I have discussed the ideal factors at length with Dirichlet and more
briefly with Jacobi. I used a symbolic expression taken from chemistry: the
prime factors are the elements, the ideal prime factors are those elements that
do not appear alone, but only in combination with other elements, equivalent
complex ideal numbers are as such the same as equivalent combining propor-
tions of the chemical ingredients.* The search for the ideal prime factors is
the chemical analysis, the complex numbers labeled ψ or Ψ in my essay are
the reagents and the whole number q, which appears as a real factor, is the
sediment that manifests itself upon application of the right reagent. In brief,
the whole collection of notions of chemistry agrees in a striking fashion with
those in which the theory of complex numbers is formulated.”

* My limited knowledge of chemistry and of chemical terms in any language
forces me to guess here. I suppose that two different molecules can be com-
bined of the same elements in the same proportions, and that the reference
is to this, but I do not know and would be happy for a correction or a confir-
mation.

Two ideal numbers a and b are called equivalent if there are ordinary
numbers a and b in Z(α) such that aa = bb. If a is equivalent to b and b to
c, then, as is to be expected, a is equivalent to c. Thus the collection of all
ideal numbers is decomposed into classes, one class being formed of all ideal
numbers equivalent to any given one. One very important fact (or theorem)
established by Kummer right at the beginning of his investigations is that the
number of different classes is finite.

He also investigates, and this is easier, the units. I observe that there
are very many units in Z(α) is n is larger than 3. Some can be formed in the
following way. If 1 < r < l, then

1− αr

1− α
= 1 + α + α2 + · · ·+ αr−2 + αr−1

is in Z(α). If we choose s such that rs ≡ 1 (mod l) and apply the symmetry
z → zs, then this relation becomes

1− α

1− αr
= 1 + αs + α2s + · · ·+ α(r−2)s + α(r−1)s,
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Remark

Those who are familiar with the techniques of the development of the
theory of algebraic numbers by Kronecker and Dedekind, the successors to
Kummer, will find these metaphors foreign to their own experience. Kum-
mer’s methods were different, less abstract, with a more immediate appeal.
The abstract methods have by now screened the concrete, and the student is
often misled. Hermann Weyl, for example, in his notes on algebraic number
theory, notes I have already praised, observes after developing the abstract
theory and as he is about to apply it to cyclotomic fields, the fields for which
Kummer had developed his theory,

“It is the common curse of all general and abstract theories that they have to
be far advanced before yielding useful results in concrete problems.”

I was persuaded by these lines when I first read them four decades ago,
and it was not until undertaking these lectures that I appreciated the fallacy
in them. There is a great deal to be said for the right abstract, general theories
in mathematics and every reason to be impatient with the dull-witted who
deny their value simply because they do not understand them, along the lines
of the German expression,

“Was der Bauer nicht kennt, das frißt er auch nicht.”

None the less for the particular concrete problem that Weyl was about to
consider, namely cyclotomic fields, the general and abstract theories are not
necessary. It is far better and far more instructive to follow Kummer and to
deal with the cyclotomic fields directly without any general tools.

The tension between the abstract and the concrete in mathematics has
no final resolution, either aesthetically or practically.
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so that both
1− αr

1− α

and its reciprocal are in Z(α). Thus it is a unit.
If n = 3, then all we have is

1− α2

1− α
= 1 + α = −α2,

so that we do not have many units of this form. Otherwise there are many.
If n = 5, then

α · 1− α4

1− α
= α(1 + α + α2 + α3) = α + α2 + α3 + α4 = −1,

so that
1− α4

1− α
= −α4

is not of much interest. On the other hand,

α2 · 1− α2

1− α
= α2(1 + α) = α2 + α3 = −1− α1 − α4

is 1−w if w = α+α4 is the number (−1+
√

5)/2 is the number we met when
treating the regular hexagon. Thus 1− w is (3−

√
5)/2 and

3−
√

5
2

3 +
√

5
2

=
9− 5

4
= 1

is in fact a unit in the domain formed from the square root of 5. If we square
1− w, we obtain

9 + 5− 6
√

5
4

=
7− 3

√
5

2
Cubing we obtain

7− 3
√

5
2

3−
√

5
2

=
36− 16

√
5

4
= (9− 4

√
5)(9 +

√
5) = 81− 16.5− 1.

Thus we obtain a solution of Pell’s equation,

1 + 5x2 = y2, x = 4, y = 9.
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In a letter to Kronecker dated April 2, 1847 Kummer described how he
could prove Fermat’s theorem if he made two assumptions, one on the number
of classes and one on the units. These assumptions are not always satisfied,
so that he was not to obtain in this way a general proof of Fermat’s theorem,
but he would in the course of years, verify that they were satisfied in many
cases, and would in addition show that weaker hypotheses sufficed. Kummer
denotes n by λ, but I keep to our notation.

I) If a unit has the form c + nξ, where c is an ordinary whole number and ξ
is in Z(α), then it is the n-th power of another unit.

II) If a is any ideal number then the ideal number an is the ideal number
associated to a number in Z(α) only if this is already true for a itself, or better,
as it is stronger, the number of classes of ideal numbers is not a multiple of
n.

If n = 3, then there are six units, of which two, ±1 are certainly third
powers, and of which the other four, ±α and ±α2 = ∓(1 + α) are not of
the form envisaged in the first hypothesis. They are also not third powers.
If n = 2, then Z(α) is just the domain Z of whole numbers but −1 is not
a square. So the first hypothesis is not satisfied in this case. For n = 2
and n = 3, there is a single class. So the number of classes is 1 which is
not divisible by n. As we shall see, the proof uses, however, the additional
assumption n > 2. The stronger form of the second hypothesis is what is
usually proved.

I do not want to offer here all of the proof given by Kummer in his letter
to Kronecker that Fermat’s theorem follows from these two hypotheses. Let
me present none the less one of the main ideas. He supposes that

(C) xn + yn = zn, xyz 6= 0

and shows that one of the three numbers x, y or z is necessarily divisible by
n, just as we did for n = 3. Now we saw for n = 3 that n was a unit times
(1− α)n−1. This is so in general because

(1− α)n−1 = n
1− α

1− α

1− α

1− α2

1− α

1− α3
. . .

1− α

1− αn−1
,

as we see on substituting x = 1 in the relation

(x− α)(x− α2) . . . (x− αn−1) = xn−1 + xn−2 + . . . x + 1.

14



Thus, as we take n odd, (C) implies a relation

(D) un − vn = E(1− α)mnwn, m > 0, uvw 6= 0

with E a unit and he shows that such a relation cannot be satisfied even with
numbers u, v and w in Z(α), at least not with numbers satisfying

(E) u = c + (1− α)mn−n+1Φ, v = c + (1− α)mn−n+1Ψ,

where Φ and Ψ are in Z(α) and c is an ordinary whole number. Just as for
n = 3, there are two steps. It has to be shown that (D) is impossible for
m = 1. Then it has to be shown that if it is possible for m > 1 then it is
possible with m replaced by m − 1. I consider only the second step, as this
make clear the role of the second hypothesis and the hypothesis n > 2.

We can factor un − vn as

(F ) un − vn = (u− v)(u− αv)(u− α2v) . . . (u− αn−1v).

To see this divide both sides by vn to obtain with x = u/v

xn − 1 = (x− 1)(x− α) . . . (x− αn−1).

This relation just expresses the fact that

1, α, α2, . . . , αn−1

are all the roots of xn − 1 = 0.
Now we factor (F) into ideal prime factors and use the second hypothesis

and the relation (D). Just as for n = 3, we see that the factors appearing
on the right side of (F) have at most the prime factor associated to 1 − α in
common. This number does indeed determine a prime ideal. That is easily
verified as its norm is n. It is the number we denoted λ for n = 3. That
means again that one of the numbers on the right side of (F) is divisible by
(1− α)mn−n+1 and by no higher power, the others being exactly divisble by
1−α. All of this is exactly the same as for n = 3. Once again, we can replace
u by αku with any k as αn = 1. Making use of such a replacement, we may
suppose that it is u − v that is exactly divisible by (1− α)mn−n+1. This we
did for n = 3 as well. Thus we have

u− v = e(1− α)mn−n+1wn
1 ,
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where at first ewn
1 is only the n-th power of an ideal number w. But the

second hypothesis asserts that if the n-th power of an ideal number is the ideal
number associated to an ordinary number, then that is true of the original
ideal number. Consequently w is associated to w1 and the equation (F), in
which e is a unit, results.

For similar reasons we have

u− αrv = er(1− αr)tnr , r = 1, . . . , n− 1

in which er is again a unit.
Kummer has then to make use of the condition (E) and the first hypoth-

esis to ensure that each er is an n-th power, er = fnr , and to replace ert
n
r by

znr , zr = frtr. Finally he uses two of the equations

(G) u− αrv = (1− αr)znr ,

but to have two of them, he needs n > 2 for 0 < r < n. Consider then (G)
and

(H) u − αsv = (1− αs)zns .

Mutiply the first by 1 − αs and the second by 1 − αr and subtract. On the
left we obtain

(J)
(1− αs)(u− αrv)− (1− αr)(u− αsv) = (αr − αs)(u− v)

= (αr − αs)e(1− α)mn−n+1wn
1 ,

and on the right

(I) (1− αr)(1− αs)(un1 − vn1 ).

where, following Kummer, we have set zr = u1 and zs = v1.
We want to deduce from the equality of (I) and (J) a relation of the form

(D), with u1, v1 and w1 replacing u, v and w and with m replaced by m− 1.
What (I) and (J) give is a relation

(K) un1 − vn1 =
(αr − αs)(1− α)
(1− αr)(1− αs)

e(1− α)mn−nwn
1 .

If

(L)
(αr − αs)(1− α)
(1− αr)(1− αs)
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is a unit, then its product with e is again a unit e1 and the relation (K)
becomes

un1 − vn1 = e1(1− α)(m−1)nwn
1 ,

which is exactly like (D) but with m replaced by m − 1. Of course the
conditions (E) have still to be verified, but that we leave to Kummer.

The expression in (L) is

αr · 1− αs−r

1− α

1− α

1− αr
1− α

1− αs
,

thus the product of four expressions, all of which is a unit. So it is a unit.
Kummer was able to verify the two hypotheses for a large number of

primes. They are true for all primes less than 100 except 37, 59 and 67, but
it is not known that they are true for an infinite number of primes.

We do not have time to discuss Kummer’s efforts to verify his hypotheses.
Nor do we have time, or perhaps even the inclination, to discuss the methods
introduced by Kummer and others to circumvent the difficulties entailed by
the lack of general validity of these hypotheses. Kummer’s claims to greatness
rest as much on his creation of a rich theory of algebraic numbers and on
discoveries that remain, even after the resolution of Fermat’s theorem, very
near mysteries that are at core of modern number theory as they do on his
very bold, highly acclaimed, but ultimately only partially successful treatment
of Fermat’s theorem. I had hoped initially to offer in these lectures a glimpse
of these mysteries to a lay audience and at the same time, by removing them
from an abstract, theoretical sphere burdened with definitions to a plane
where their significance would be immediately comprehensible, to acquire
myself some adequate insight into their meaning. Frankly, in this respect, I
have not come very far along, and am still about where I was a year ago.
With the first set of lectures behind me, I can perhaps(!) now begin to think
about a second in which I try again.

The mysteries to which I refer are to a large extent conjectures about
the relation between numbers defined in one way or another by attempts
to analyze the solutions of equations in integers or rational numbers and
numbers defined by analytic expressions, thus expressions whose formation
requires integrals and infinite series, but which can nevertheless, in contrast
to the first class of numbers, be – provided various other conjectures can be
established – calculated readily. Kummer was one of the first to discover such
relations. The number of ideal classes of Z(α) is a number of the first type.
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It is by no means clear how to calculate it, yet Kummer, for his purposes,
needs to show that it is prime to n. This is his second hypothesis. What he
eventually showed is that his two hypotheses are valid if and only if the prime
n does not divide the numerator of a certain collection of numbers, called
Bernoulli numbers. These numbers can be defined in an elementary way, and
I shall do so. Not only can they be readily calculated as we shall see, but
also they are, in essence, the value of a very famous function, the Riemann
zeta function, at negative integers. This function is defined by summing an
infinite series.

There are many relations of this sort presently conjectured. The con-
jectures are magnificent, and it is a still outstanding task of the modern
mathematician not only to prove them but also to explain them to himself
and to the rest of the world.

The Bernoulli numbers B0, B1, B2, and so on, can be defined in a simple
way. First of all, B0 = 1. Then, in general,

Bn = − 1
n + 1

(
B0 + (n + 1)B1 + · · ·+ n(n + 1)

2
Bn+1

)
.

Thus

B1 = −1
2
B0 = −1

2
,

B2 = −1
3

(
1 + 3

(
−1

2

))
=

1
6
,

B3 = −1
4

(
1 + 4

(
−1

2

)
+ 6

(
1
6

))
= 0,

B4 = −1
5

(
1 + 5

(
−1

2

)
+ 10

(
1
6

)
+ 10(0)

)
= − 1

30
.

The numbers grow rapidly, except that Bk, k odd, is always 0. For example,

B30 =
8615841276005

14322
.

Kummer’s criterion fora prime n to satisfy his two hypotheses is that n does
not divide the numerator of the numbers B2, B4, . . . , Bn−3. For example 5
does not divide the numerator of B2 which is 1 and 7 does not divide the
numerator of B2 or of B4, which is 1. Since, for example,

B6 =
691
2730

,
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the prime 691 will not satisfy Kummer’s hypotheses. We also have

B32 =
7709321041217

510

and
7709321041217 = 37× 683× 305065927,

so that n = 37 does not satisfy Kummer’s hypotheses.
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