
Lecture 4

TODAY’S TASK

To understand the relation between the Eu-
clidean geometrical constructions and algebra,
especially addition, subtraction, multiplication,
division, and the extraction of square roots.

1



The historical development of Cartesian geometry took place over
about a century and a half, from the middle of the sixteenth to the end
of the seventeenth, and was neither begun by Descartes nor ended by him.
His concerns were none the less to some extent ours, the discovery and anal-
ysis of geometric constructions by algebraic means. On the other hand, the
use of a rectilinear coordinate system, so familiar to us from various cities,
especially New York, is not to be found in Descartes, where indeed one
does not see a coordinate system at all. Descartes published his views early
in the seventeenth century. Coordinate systems in a sense approximating
ours did not appear until late in the century, in particular, in the works of
Newton and Leibniz.

Nevertheless Descartes concerns are closer to ours than are those of
other authors, whom I am in any case not yet in a position to discuss.
Descartes not only published in the vernacular but also has been widely
translated, so that he is much more accessible than many of the others.

Since some familiarity with coordinate systems and their manipulation
is almost universal in the modern world, it will be most efficient to be quite
ahistorical and to run through a standard, textbook treatment, so that
we can get on to Gauss within a reasonable time Even so a few scattered
references to Descartes will be useful, just for fun.
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We shall have to analyze algebraically the constructions of Euclidean geometry, thus
analyze these constructions in terms of Cartesian geometry. We examine first translation
and rotation. Once the coordinates are chosen, we can consider translation by a given
(a, b), thus translation by a parallel to one axis and then by b parallel to another, where
it is understood that a or b could be negative, thus comprise both a magnitude and a
direction and that then we are to translate to the left or downward. Consider the first
step. To translate the point (x, y) parallel to the horizontal axis, thus parallel to the axis
of abscissas, we draw a line through p = (x, y) parallel to this axis, a construction that,
according to Euclid, can be carried with a ruler and compass. Then with the help of a
compass, we mark on it a point to the right or left of p, according to the sign of a, that is
at a distance from it equal to the magnitude of a. The second translation is effected in a
similar fashion. In particular, therefore, the cosntructions of Euclidean geometry allow us
to add or subtract two numbers, which could be, for example, a and x.

Multiplication is a different matter, because there is a philosophical point to discuss
first. In Cartesian geometry we have a fundamental length, so that it is appropriate to
identify lengths and numbers. We can therefore add two lengths or two numbers, and
scarcely notice the difference. Multiplying two lengths yields however an area, which is
not yet identified with a number, so that we have to be careful. We should therefore be
explicit about the fundamental length. We call it λ. Then another length is µ and it is
only µ/λ that is a number, a proportion or a ratio in the language of Euclid. How then
do we multiply two proportions µ/λ and ν/λ. We use similar triangles. We can divide in
a similar way. All we need is exchange the roles of ν and η.

Since rotation is an operation that can, as we have seen, be carried out by multiplying
coordinates, rotation of a given point, and thus of a given line, determined by any two
points on it, can be carried out explicitly provided that the angle is given, either by its
sine and cosine or by the two lines that form it, for from them the sine and cosine can be
determined.
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Cartesian or analytic geometry

(x,y)

(1.5,1)

(-2,-2)

(-1,2)

(4,-1)

(3,2)
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Observe that in Cartesian geometry a length is only implicit,
or if one prefers there is no length, it has been replaced by a pure
number. Thus in Cartesian geometry the notion of number is pri-
mary and independent of length, whereas in euclidean geometry the
notion of number is secondary and is derived from that of length.

The notion of conguence that is so essential for Euclidean ge-
ometry has now to be made explicit as a combination of translations
and rotations. I recall the formulas.

5



Translation

(x,y) (x+a,y)

(x+a,y+b)

(a,b)
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Rotation
Rotation is more difficult. Recall that rotation of a figure and especially

of a point is a turning about some given point that we can take at first to
be the origin. A rotation is through an angle and we have first to be able to
specify an angle. This is done – as you will no doubt be delighted to discover
– through its sine and cosine.

θ

sin(θ)

cos(θ)

We want to rotate.

θ
(x,y)

(x’,y’)

How do we find the coordinates (x′, y′) in terms of (x, y)?
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Measurement of angles.

θ
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An angle is normally measured by the length of the arc it subtends. This length can be
measured in two different units: degrees or radians. Degrees are defined by the condition
that the total circumference have length 360◦ and radians by the condition that the total
circumference have length 2π, thus by the condition that the radius have length 1. We
shall use radians as our measure. A right angle contains 90◦ or π/2 radians.
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y(x , )

ycos (θ)
rcos (θ)

xcos (θ)

rsin (θ)

θ

r

(x,y)

The point (x, y) is at a distance r =
√
x2 + y2 from the origin, about

which we are rotating. There are two triangles in the figure similar to the
triangle with vertices (0, 0, (x, 0), (x, y), a triangle which itself is not shown. It
is right-angled with hypotenuse r, vertical side y and horizontal side x. Of the
two triangles, one has hypotenuse r cos(θ). The other has hypotenuse r sin(θ).
The one whose sides are not given has its vertical side equal to x sin(θ) and
its horizontal side equal to y sin(θ).

We are trying to find the coordinates (x′, y′). They are seen to be

x′ = x cos(θ)− y sin(θ),
y′ = x sin(θ) + y cos(θ).
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(x,y)

ϕ

This is the triangle with vertices (0, 0), (x, 0), (x, y). Let ϕ be the indi-
cated angle. Since

x = r cos(ϕ), y = r sin(ϕ),

while
x′ = r cos(ϕ+ θ), y = r sin(ϕ+ θ),

the formulas on the previous page yield formulas that will be familiar to most
of you, but which I recall.

cos(ϕ+ θ) = cos(ϕ) cos(θ)− sin(ϕ) sin(θ),
sin(ϕ+ θ) = cos(ϕ) sin(θ) + sin(ϕ) cos(θ).

They will be important for us.
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y = rsin (ϕ)

cos (ϕ)

(x,y)

ϕ

rr = xx + yy
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Niccolo Tartaglia (c. 1500-1557)

Gerolamo Cardano (1501-1576)

François Viète (1526-1573)

ax3 + bx2 + cx2 + d = 0

ax4 + bx3 + cx2 + dx+ e = 0
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Girard Desargues (c. 1591-1661)

René Descartes (1596-1661)

Pierre de Fermat (1601-1665)
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Lecture 5
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λ µ

ν

η

By similarity of triangles,
η

ν
=
µ

λ
.

Thus
η

ν
× ν

λ
=
µ

λ
× ν

λ
or

η

λ
=
µ

λ
× ν

λ
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Warning

I observe that multiplication and division require that we draw a line
through a point parallel to a given line. We have not given the proof that this
is possible, but like the construction of the perpendicular bisector of the line
joining two points, it requires taking the intersection of two circles.

*******************************

It appears therefore that we do not need to take the intersection of two
circles because square roots can be constructed by intersecting a line with a
circle. However, as we already noted, multiplication and division require the
intersection of circles, so that the construction is by no means redundant.
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Line through a point parallel to a given line
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Equations for circles in Cartesian geometry

(a,b)

(0,0)

Consider, first of all, a circle about the origin. By the pythagorean the-
orem, the equation is

x2 + y2 = r2,

if r is the radius of the circle and (x, y) a point on it. If we start with another
circle with center (a, b), then we translate it to a circle with center at the
origin.

(x, y)→ (x− a, y − b).
Since the new point is on the circle of radius 1 it satisfies

(A) (x− a)2 + (y − b)2 = r2

This is the equation of a general circle. If we expand all the powers it becomes

(B) x2 + y2 + 2ax+ 2by + d = 0,

where d = a2 + b2 − r2. Recall that for any two numbers x and a

(x+ a)2 = x2 + xa+ ax+ a2 = x2 + 2ax+ a2.
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Equations for lines in Cartesian geometry

(a,b)

(x,y)

Consider, first of all, a line through the origin. Suppose this is the line
through (0, 0) and (a, b) and that we want to determine what equation is
satisfied by a general point (x, y) on it. Since the triangle with vertices (0, 0),
(x, 0) and (x, y) is similar to the triangle with vertices (0, 0), (a, 0) and ((a, b)
we have

y : b = x : a,
y

b
=
x

a
, ay = bx, bx− ay = 0.

Next suppose we have an arbitrary line through the points (a, b) and (c, d)
and that (x, y) is a point on it. Then translating through (−c,−d) we obtain
a line through the origin (0, 0) on which (a− c, b − d) and (x− c, y − d) lie.
thus

(b− d)(x− c)− (a− c)(y − d) = 0.

Setting e = (b−d), f = −(a− c), g = −(b−d)c+ (a− c)d we can change this
equation to

ex+ fy + g = 0.

This is the general equation of a line. It contains x and y to the first power
and three constants.
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(c-a,d-b)

(x-a,y-b)

(a,b)

(c,d)

(x,y)

Observe that the coefficients e, f and g that appear in the equation of
the line can be expressed algebraically in terms of the coefficients (a, b) and
(c, d) of any two points on it.
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Intersection of lines

In the equation for a line ex + fy + g = 0 that we obtained, the point
(−f, e) was a point on the line through the origin obtained by translation. If
we started from a parallel line to obtain e′x + f ′y + g′ then the translated
line would be the same and (−f ′, e′) would lie on it. Thus by similarity of
triangles

e : e′ = −f : −f ′ = f : f ′
e

e′
=

f

f ′
, ef ′ = fe′, ef ′ − f ′e = 0.

The final equation is then the condition that the two equations

ex + fy + g = 0, e′x+ f ′y = g′ = 0

define parallel lines.
If two lines are not parallel they must have a point in common, thus a

point that satisfies the two equations

ex + fy + g = 0,
e′x+ f ′y + g′ = 0.

We solve first for x, multiplying the first equation by f ′ and the second by f
and subtracting.

(f ′e− fe′)x+ f ′g − fg′ = 0, x = −f
′g − fg′
f ′e− e′f .

Since f ′e−fe′ is not 0, This yields x. we find y in a similar fashion. Thus from
the point of view of geometrical constructions, the intersection of lines is not
so interesting. It yields a point that we construct with addition, multiplication
and division from the coefficients of the equations of the lines, and thus simply
from the coordinates of points on the lines.
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x− y = 1, x+ y = 3

x = 2, y = 1
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Intersection of a line and a circle

First of all, translate the the circle so that its center is at (0, 0) and translate the line
in the same way, so that the points of intersection are also translated. If (a, b) is the known
center of circle, this just means subtracting a or b from the coordinates of all points. The
translation can be undone at the end by adding a and b back. The circle will then have
an equation

x2 + y2 = r2.

Suppose the line is given by its equation

ax+ by + c = 0. New a, b

Either a or b will not be 0. I treat the case that a is not 0. Then

x = −by + c

a
.

Thus
(by + c)2

a2
+ y2 = r2, (by + c)2 + a2y2 = a2r2

or
(b2 + a2)y2 + 2bcy + c2 − a2r2 = 0.

Solve this equation by the usual formula – which then has to be simplified algebraically –
to obtain

y = − bc

a2 + b2
±
√
b2c2 − (b2 + a2)(c2 − a2r2)

a2 + b2
.

The conclusion is that the points of intersection can be found by calculating the square
root of a number formed from known numbers: the three numbers a, b and c that are
determined by two points on the line and the radius r of the circle.
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An example

Suppose we want to find the square root of a number D. Take a circle with center at
the origin and diameter 1 +D, thus with radius (1 +D)/2. Take the vertical line through
the point ((−D + 1)/2, 0). It will have an equation

x+
D − 1

2
= 0.

Thus we have to substitute a =, b = 0, c = (D − 1)/2, r = (D + 1)/2 in the previous
formula. The first term on the right is 0 and the second becomes

√
D because

r2 − c2 =
(D + 1)2

4
− (D − 1)2

4
= D.

Thus the second coordinate of the point on the figure is the square root of the number D,
so that intersecting an appropriate line with an appropriate circle, we find the square root
of any positive number. This was an observation of Descartes.

F
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Intersection of two circles

It turns out that the intersection of two circles can also be determined
by the extraction of square roots.

Once again we translate so that one of the circles has its center at the
origin, or perhaps better we choose the origin to be at the center of one of the
circles. Then we choose the axis of abscissas to be the line passing through
the center of the two circles, and the unit distance to be the distance between
the two centers. Then the first circle has an equation

x2 + y2 = r2 =⇒ y2 = r2 − x2

and the second center at (1, 0)

(x− 1)2 + y2 = R2 =⇒ (x− 1)2 + r2 − x2 = R2,

because its center is at (1, 0). Simplify to obtain

2x = r2 + 1−R2 =⇒ x =
r2 + 1−R2

2

Thus y is equal to√
r2 − (r2 + 1− R2)2

4
=

√
−(r2 −R2)2

4
+
r2 +R2

2
− 1

4

To verify this, try r = 1/2, R = 1/2, when the intersection consists of a
single point with y = 0. As a further verification, note that if x ≥ 0, thus
if r2 + 1 ≥ R2 then for y to be a real number, the expression under the
square-root sign has to be positive or at least not negative, thus r ≥ x or

2r ≥ r2 + 1−R2 ⇐⇒ R2 ≥ (r − 1)2.

If r ≥ 1 this means that R ≥ r − 1 and if r < 1 it means that R + r ≥ 1. If
x < 0 thus if r2 +1 < R2 then 2r has to be larger than or equal to R2−r2−1.
Thus (r + 1)2 ≥ R2 or r + 1 > R which is the same as 1 − R > −r. I give
some examples.
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Examples
For the two circles with centers at (0, 0) and (1, 0) and radii r and R to meet

the points on the axis of abscissas with abscissa −r, 1−R, r, 1 +R must lie in this
order. This is illustrated in the examples.

-r 1-R r 1+R
r = R = .75

r 1+R1-R-r r = .3, R = .6

r 1+R1-R -r
r = .5, R = 1.7
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Some texts consulted

HEATH’S EUCLID

DESCARTES: DISCOURS DE LA METHODE

MORRIS KLINE:
MATHEMATICAL THOUGHT FROM ANCIENT TO MODERN TIMES

CARL BOYER: HISTORY OF ANALYTICAL GEOMETRY

GAUSS: ARITHMETICAL INVESTIGATIONS

FELIX KLEIN: FAMOUS PROBLEMS OF ELEMENTARY GEOMETRY
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On Descartes

Although it has been and remains my intention to talk about mathematics and not
to allow myself any digressions, which would quickly reveal enormous gaps in my general
culture, even, and perhaps especially, in that related to matters directly pertinent to
mathematics and its history, I was last week questioned about the relation of Descartes’s
method to his mathematics and about the influence of his mathematics on that which
followed. Even a brief glance at Descartes’s works and his correspondence with other
savants of the period renders evident that no serious answer can be offered without a
knowledge of the European intellectual environment in the first decades of the seventeenth
century that I do not have.

It is, however, easy to say one or two things based almost entirely on the Discours itself,
since Descartes is quite explicit about the role of mathematics in his proposed methodology,
a methodology that seems to have matured over the course of 17 years, from 1619, when
he was twenty-three years old, to 1637, when he was forty-one. In the intervening years,
he had seen much of the world, at least of Europe, beginning with service at the battle
of the White Mountain in Bohemia, an early, decisive battle of the Thirty Years War.
The last nine years before the appearance of the Discours were spent in the Netherlands.
Although, so far as I can tell, the region was still embroiled in the aftermath of a struggle
for independence and in religious conflict, Descartes life appears to have been untroubled.

The method as such appears, according to Descartes’s account, to have been formu-
lated early. Descartes introduces its precepts with the remark that “he had studied a little
when young among other parts of philosophy, logic, and among other parts of mathemat-
ics, the analysis of the geometers and algebra, three arts or sciences that seemed capable of
contributing to his plan.” On closer examination, logic served more to explain the known
than to learn the new. As for the analysis of the ancients and the algebra of the moderns,
they both seemed too abstract, and the first too constrained to the use of figures and the
second to various rules and signs out of which an art had been constructed that confused
the mind rather than cultivating it.

He himself proposes an art with a few simple precepts that I summarize briefly: never
to accept anything as true except that which he recognizes as clearly such; to divide each
difficulty that he meets into manageable pieces; to proceed in his thinking, stage by stage,
from the simple to the complex; to review his thinking so carefully that he was sure that
nothing had been omitted. I believe that these precepts are the essence of his method.

Then oddly enough, in spite of his previous strictures, he passes back to mathematics.
I cite the text, with a more or less literal translation. “ These long chains of reasonings,
all simple and easy, that geometers customarily use to arrive at their most difficult proofs,
gave me occasion to imagine that everything that could be known by men, followed in
the same fashion; and that provided only that one abstained from accepting anything for
true that was not, and that one kept always to the necessary order in deducing one from
another, there were none so abstruse that one would not ultimately arrive at them, nor
so hidden that they would never be discovered. I had no difficulty in finding the correct
place to begin, because I knew already that it was with the simplest and the easiest to

35



know; and considering that, among all those who had already searched for the truth in
the sciences, it was only the mathematicians who had been able to discover some proofs,
that is to say, some certain and evident reasoning, I did not at all doubt that these would
be the things they had examined; even though I hoped for no other profit than that they
might accustom my wit to nourish itself with truths and not to content itself with false
arguments. But I had no intention, for all that, of trying to learn all the particular sciences
commonly called mathematical; and seeing that although their objects were different they
nevertheless were in accord and that they did not treat of other things except for various
pertinent ratios or proportions,

One might suppose that Descartes is here thinking of Book V of Euclid because the theory
of proportions contained therein can be applied to lengths, areas, volumes or numbers!

I thought that it would be more profitable to examine these proportions in general, and
only in those subjects that would make a knowledge of them easier for me, but also without
restricting them in any manner, in order to be able to apply them later to the other subjects
for which they were appropriate. Then, having observed that to understand them I would
have sometimes to consider them separately and sometimes to imagine or understand
them several at a time, I thought that in order to consider them better separately, I should
imagine them as lines, because I found nothing that was more simple, or that I could more
distinctly represent to my imagination and my senses;

This is pertinent to the choice of problems in La Géométrie

but that in order to hold them in my mind or to understand several at once, it was necessary
to explain them with some signs (ciphers), the shortest possible; and in this way I took
the best from geometrical analysis and from algebra, correcting the faults of one by the
other.”

Of course, Descartes was by no means primarily a mathematician, and it may not be
clear from these remarks that he was a mathematician at all. In fact he had two quite
different mathematical talents: he was able to discover new facts, which mathematicians
normally call theorems or, nowadays, results and perhaps even to prove them; and he could
formulate new concepts. Of course, I cannot say with any authority how new – that would
demand a knowledge of sixteenth and seventeenth century science that I do not have, but
secondary sources suggest that the mathematical results of La géométrie are pretty much
his own. The prettiest, mentioned in passing, without proof is Descartes’s rule of signs,
that appears, difficult as this is to believe, to have been first proved by Gauss. It would be
a simple exercise for any mathematician in the room, even those to whose attention it had
never been drawn. The proof that suggests itself uses differentiation and mathematical
induction. I explain the statement briefly. Although it is not directly germane to our
purposes, the explanation will make later concepts easier. Besides it is useful now and
again, in lectures of this kind, to offer simple, comprehensible mathematical assertions,
that can be certified as genuinely elegant, if for no other reason than to give the rest of
the world some feeling for what this notion means to the mathematician.
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Descartes’s rule of signs

THE NUMBER OF TRUE (POSITIVE) ROOTS IS AT MOST
EQUAL TO THE NUMBER OF SIGN CHANGES. THE NUM-
BER OF FALSE (NEGATIVE) ROOTS IS AT MOST EQUAL TO
THE NUMBER OF SIGN DOUBLETS.

(x− 1)(x− 2)(x− 3) = x3 − 6x2 − 11x− 6 = 0

Positive roots are: x = 1, 2, 3. Three sign changes; no doublets.

(x+ 1)(x+ 2)(x− 3) = x3 − 7x− 6 = 0

Positive roots are: x = 3. Negative: x = −1,−2. Two sign changes; three doublets.

(x+ 1)(x− 2)(x− 3) = x3 − 4x2 + x+ 6 = 0

Positive roots are: x = 2, 3. Negative: −1. Two sign changes; one doublet.

(x2 + 1)(x− 3) = x3 − 3x2 + x− 3 = 0

Positive roots are: x = 3. No negative roots. Three sign changes; no doublets.

(x+ 1)(x+ 2)(x+ 3) = x3 + 6x2 + 11x+ 6 = 0

No positive roots. Negative roots: −1,−2,−3. No sign changes. Three doublets.

(x− 1)2(x− 2) = x3 − 4x2 + 5x− 2 = 0

Roots: 1, 1, 2. Three sign changes. No doublets.

NOTE: Every equation of degree n (dimension for Descartes) has
exactly n roots, but they can be complex and they can be repeated!.
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I recall that Descartes introduction of Cartesian geometry appears in
one of the three appendices to Discours de la méthode, the others being
on optics and on rainbows. It is not yet clear to me what the relation
between the Discours and the appendices is. The appendices are more than
appendices and the body more than an introduction to the appendices.

Although the appendix on geometry is largely devoted to construction
problems, they are by and large not the construction problems that concern
us, thus those that can be effected with ruler and compass. Our problems
are in Descartes terminology planar problems although he sometimes to
them as two-dimensional problems, but two dimensional has nothing to do
with the plane. Descartes simply means that in the final algebraic equation
arising from the geometric problem the unknown appears as a square. He
deals with these problems briefly in the first few pages and does come back
to them repeatedly, but they are simply the first in a sequence of problems,
followed by solid problems or problems of dimension three and four, and
then by “supersolid” problems of dimension 6.

There are a number of points that he makes, that are worth recalling
here. The first is that the use of ruler and compass alone is an artificial
restriction. The compass is a mechanical device, as is the ruler, and other
mechanical devices could be considered, of which Descartes suggests one.
It constructs cube roots, fourth roots and indeed roots of any order. The
restriction to ruler and compass has, however, a great deal of historical im-
portance, because that is what we find in Euclid, as well as great theoretical
significance, because it had eventually to be asked what the algebraic and
arithmetic significance of the restriction was.

Descartes wanted to play hardball. I cannot assure you that he suc-
ceeded. It would I believe take a great deal of study of earlier authors and
of Descartes’s contemporaries to determine exactly what his contributions
were.

Since he wanted to demonstrate that the use of algebraic equations and
coordinates permitted the discovery and demonstration of new theorems,
most of the appendix is devoted to indeterminate construction problems,
thus to problems that define a curve, or to problems that require more than
a ruler and compass for their solution.

The free passage back and forth from the geometry to the algebra, al-
lows him to convert one kind of geometric problem to another. For example
to duplicate a cube, one needs to extract the cube root of 2. If the side of
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a cube is a, so that its volume is a3 then a cube of side 3
√

2a has double its
volume, namely 2a. Descartes showed that all cubic equations, in particular

x3 = 2

could be solved by intersecting circles with a conic section, in particular
with a parabola. Indeed he shows that all cubic and quartic equations can
be solved geometrically in this way.

In other words, cubic and quartic irrationalities are all constructed by
intersecting circles and parabolas. The converse is also true.

Eventually he reaches irrationalities of degree, or as he says dimension,
5 and 6, but here the construction of solutions requires the use of more
complicated mechanical devices, requiring moving parabolas.

There is among Descartes’s often Delphic remarks one that, to me
at least, anticipates in a curious way the use of complex numbers. He
observes, for example, that the geometric construction of the solutions of
cubic equations entails being able to perform exactly two constructions,
that of the cube root of a positive number, thus of constructing two mean
proportionals to two given lengths, and trisection of an arbitrary angle. We
will come back to this remark later, but neither exactly what Descartes had
in mind nor what he had learned from others is clear to me.
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If
Y A : Y B = Y B : Y C = Y C : Y D

then
(
Y A

Y B
)3 =

Y A

Y B

Y B

Y C

Y C

YD
=
Y A

Y D

The first relations are referred to by saying that Y B and Y C are two mean
proportionals between Y A and Y D. If Y A : Y D = 1 : 2 then in effect we
want

(
Y A

Y B
)3 =

1
2

or
(
Y B

Y A
)3 = 2

Thus if Y A is the side of a cube then Y B will be the side of a cube of twice
the volume.

Y A B C D

Y

A

B

C

D
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In the same way one can ask for four mean proportionals,

Y A : Y B = Y B : Y C = Y C : Y D = Y D : Y E = Y E : Y F

which implies that

(
Y A

Y B
)5 =

Y A

Y F

41



42



43



44



CONCLUSION

If a geometric construction requires in its analytic form
nothing but addition, subtraction, multiplication, di-
vision, and the extraction of square roots, then it can
be achieved with ruler and compass. These arithmetic
operations are to be applied to the two coordinates of
each point given by the construction problem. Con-
versely if it can be achieved with ruler and compass,
then when represented analytically all points involved
in the construction will have coordinates that can be
obtained from those of the points initially given by
these five arithmetic operations. The results may be
very complicated. If (a, b) and (c, d) are two of the
points given, one new coordinate might be

√
a2 +

ac2√
b2 + d2

−

√√√√7b2 + c

√
a2 +

2b4√
c2 + d2

This point reached, we can now concentrate almost
entirely on the algebra!
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Complex numbers

We want to analyze in an algebraic manner, thus in terms of Cartesian
geometry, the geometric construction of the regular pentagon. For this it is
best to go beyond Descartes and to employ complex numbers. I begin with a
rapid review of their definition.

Recall that the formula for the solution of a quadratic equation

ax2 + bx+ c = 0

is

(I) x = − b

2a
±
√
b2 − 4ac

2a

Thus there are two solutions, different save in the exceptional case that b2 =
4ac. If b2 − 4ac is negative, the square root does not exist in the usual sense
and we are, in order to have a complete theory, forced to introduce purely
formally the square roots of negative numbers. If C is positive,

(II)
√
−C =

√
−1
√
C,

so that once we have a square root of −1 that we are prepared to multiply with
any real number we have the square root of any number. If we are prepared
to add formally a real number to one of these purely imaginary numbers, in
which we permit both the positive square root of C and the negative square
root, then we have all the numbers

A+
√
−1B = A+B

√
−1

that appear in (I), so that we can formally solve any quadratic equation. If
b2 − 4ac < 0, take

A = − b

2a
, B =

√
4ac− b2

46



The algebra of complex numbers

We need to be able to perform the usual arithmetic operations on complex
numbers. Rather than constantly writing

√
−1, it is the mathematician’s

habit to write simply i. Thus i is a number whose square is −1 and the only
trick in operating with i or with the square root of −1 is to replace i2 with
−1 whenever it occurs. Thus

(a+ bi)× (c+ di) = ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i

More generally when adding, subtracting, and multiplying in any order any
number of complex numbers the result is always expressed finally as the sum
of a real number a and another real number b times i.

We add two complex numbers

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

Subtraction is the same.
Division is more difficult. Suppose A = a + bi and C = c + di are two

complex numbers, the second of which is not 0 = 0 + 0i and we want to solve

A

C
= E ⇐⇒ A = CE

Write E out explicitly E = e+ fi. Then

(a+ bi) = (c+ di)× (e+ fi)

Multiply both sides by c− di. Since

(c− di)× (c+ di) = c2 + d2,

we have
(a+ bi)× (c− di) = (c2 + d2)× (e+ fi)

or

e+ fi = (a+ bi)×
(

c

c2 + d2
− d

c2 + d2
i

)
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Complex numbers and Cartesian geometry

We usually think of complex numbers as being points in the Cartesian
plane. The complex number a+ bi being associated, or even identified in our
thinking, with the point (a, b)

0 1

i 1+i
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Division continued

The formula for division can be written as

1
c+ di

=
c

c2 + d2
− d

c2 + d2
i

Observe also in passing that

(c+ di)× (c− di) = c2 + d2

This is a positive number that is 0 only if the complex number is 0.
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Complex numbers on the unit circle and rotation

θ

cos(θ)

sin(θ)

cos(θ)+isin(θ)

Multiply x+ yi by cos(θ) + i sin(θ).

(cos(θ) + i sin(θ))× (x+ iy) = (cos(θ)x− sin(θ)y) + i(sin(θ)x+ cos(θ)y)

According to an earlier formula the effect is to rotate the point (x, y) through
an angle θ. In particular

(cos(θ) + i sin(θ))(cos(ϕ) + i sin(ϕ)) = (cos(θ + ϕ) + i sin(θ + ϕ))

Taking ϕ = θ we obtain

(cos(θ) + i sin(θ))2 = cos(2θ) + i sin(2θ),

and
(cos(θ/2) + i sin(θ/2))2 = cos(θ) + i sin(θ),
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Lecture 6

Square roots of complex numbers

A

B

C

D

θ

C = (x, y) B = (cos(θ), sin(θ))

AC =
√

x2 + y2 = r AB = 1

(x, y) = (r cos(θ), r sin(θ)), x + iy = r × (cos(θ) + i sin(θ))
√

x + iy =
√

r
√

cos(θ) + i sin(θ) =
√

r(cos(θ/2) + i sin(θ/2))

We know that
√

r can be found with ruler and compass. So can

√
cos(θ) + i sin(θ)

because it is simply a matter of bisecting the angle θ.
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Bisection of an angle
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Other roots of complex numbers

Cube roots

(I)
(cos(θ) + i sin(θ))3 = (cos(θ) + i sin(θ))((cos(θ) + i sin(θ))2

= (cos(θ) + i sin(θ))(cos(2θ) + i sin(2θ))
= cos(3θ) + i sin(3θ)

Thus

(II) (cos(θ/3) + i sin(θ/3))3 = cos(θ) + i sin(θ)

and

(III) 3
√

cos(θ) + i sin(θ) = cos(θ/3) + i sin(θ/3)

We apply equation (I) to θ = 0, θ = 2π/3 or θ = 4π/3. Then 3θ is 0, 2π or
4π so that

cos(3θ) + i sin(3θ) = 1 + 0 · i = 1.

So we have found three square roots of 1. There are no more! The first is

cos(0) + i sin(0) = 1,

hardly a surprise. In order to display these three points graphically, we denote
them

Z1 = 1, Z2 = cos(2π/3) + i sin(2π/3), Z3 = cos(4π/3) + i sin(4π/3)
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Cube roots continued

Z1

Z2

Z3

These three complex numbers satisfy the equation

z3 − 1 = 0
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We divide z3 − 1 by z − 1. We use long division.

First step.
z3 − 1
z3 − z2 z2 × (z − 1)
z2 − 1

Second step.
z2 − 1
z2 − z1 z × (z − 1)
z1 − 1

Third step.
z1 − 1
z1 − 1 1× (z − 1)

0

Thus the remainder is 0 and

z3 − 1
z − 1

= z2 + z + 1

or
z3 − 1 = (z − 1)(z2 + z + 1)

Substitute z2. Then

0 = (z2 − 1)(z2
2 + z2 + 1) =⇒ z2

2 + z2 + 1 = 0

We solve this equation.

z2 = −1
2
±
√
−3
2

= −1
2
± i
√

3
2

Thus

z2 = −1
2

+ i

√
3

2

so that cos(2π/3) = 1/2, sin(2π/3) =
√

3/2. For similar reasons z3 is the
other root.

z3 = −1
2
− i
√

3
2
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One more example of long division

To divide 2z3 + 3z2 + 4z + 1 by z2 + 3z + 2

First step:

2z3 + 3z2 + 4z + 1
2z3 + 6z2 + 4z 2z × (z2 + 3z + 2)

−3z2 + 1

Second step:

−3z2 + 1
−3z2 − 9z − 6 −3× (z2 + 3z + 2)

9z + 7

We have divided by a polynomial of degree two and the remainder
has smaller degree, namely one. The result is:

2z3 + 3z2 + 4z + 1 = (2z − 3)× (z2 + 3z + 2) + 9z + 7
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Fifth roots of unity

Z0

Z1

Z2

Z3

Z4

After the discussion of the cube roots of unity, it should come as no
surprise that the the fifth roots of unity are the numbers

cos(2kπ/5) + i sin(2kπ/5), k = 0, 1, 2, 3, 4

They form the vertices of a regular pentagon. Thus if we can show that
they can be obtained by repeatedly extracting square roots, we will have an
algebraic proof of the possibility of constructing the regular pentagon with
ruler and compass.
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