Hodge theory aspects of homological mirror symmetry

Jingyu Zhao

Institute of Advanced Study

jzhao@ias.edu

September 28, 2016
Hodge decomposition

Given a complex manifold, one can decompose the de Rham complex
\[A_X^* := \Omega^*_d R(X) \otimes \mathbb{R} \mathbb{C} \] as \[A^k_X \cong \bigoplus_{p+q=k} A^{p,q}(X), \] where \(\alpha \in A^{p,q}(X) \) is locally of the form
\[\sum f_{i_1 \ldots i_q} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\bar{z}_{i_1} \wedge \cdots \wedge d\bar{z}_{i_q}. \]
Hodge decomposition

- Given a complex manifold, one can decompose the de Rham complex $A^*_X := \Omega^*_dR(X) \otimes_{\mathbb{R}} \mathbb{C}$ as $A^k_X \cong \bigoplus_{p+q=k} A^{p,q}(X)$, where $\alpha \in A^{p,q}(X)$ is locally of the form

$$\sum f_{i_1 \cdots i_q} dz_{i_1} \wedge \cdots \wedge dz_{i_p} \wedge d\bar{z}_{i_1} \wedge \cdots \wedge d\bar{z}_{i_q}.$$

- For Kähler manifolds, Hodge theory gives the Hodge decomposition

$$H^k(X, \mathbb{C}) \cong \bigoplus_{p+q=k} H^{p,q}(X) \cong \bigoplus_{p+q=k} H^p(X, \Omega^q_X),$$

where Ω^*_X is the sheaf of holomorphic differential forms. This decomposition depends on the complex structure.
Hodge-to-de Rham spectral sequence and E_1-degeneration

Let X be a complex manifold, there is a double complex $A^\bullet \otimes \bar A^\bullet$, i.e. $\partial^2 = \bar \partial^2 = \partial \bar \partial + \bar \partial \partial = 0$. If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^\bullet (X, \mathbb{C})$. In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics. On E_1-page, $E_{p, q}^1 \hookrightarrow H^p (X, \Omega^q X)$ and E_1-degeneration implies the Hodge decomposition for $H^k (X, \mathbb{C})$. In fact, there is a (pure) Hodge structure of weight k on $H^k (X, \mathbb{C})$.

Jingyu Zhao (IAS)
Let X be a complex manifold, there is a double complex $(A_X^{*,*}, \partial, \bar{\partial})$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$. If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^\bullet(X, \mathbb{C})$. In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics. On E_1-page, $E_p^{1}\hookrightarrow H^p(X, \mathcal{O}_X)$ and E_1-degeneration implies the Hodge decomposition for $H^k(X, \mathbb{C})$. In fact, there is a (pure) Hodge structure of weight k on $H^k(X, \mathbb{C})$.

Jingyu Zhao (IAS)
Hodge theory aspects of HMS
September 28, 2016 3 / 11
Let X be a complex manifold, there is a double complex $\left(A^*_X, \partial, \bar{\partial} \right)$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.

If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^*(X, \mathbb{C})$.
Let X be a complex manifold, there is a double complex $(A^*_X, \partial, \bar{\partial})$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.

If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^*(X, \mathbb{C})$.

In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds.
Let X be a complex manifold, there is a double complex $(A_{\mathcal{X}}^{*,*}, \partial, \bar{\partial})$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.

If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^*(\mathcal{X}, \mathbb{C})$.

In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.
Hodge-to-de Rham spectral sequence and E_1-degeneration

- Let X be a complex manifold, there is a double complex $(A^*_X, \partial, \bar{\partial})$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.
- If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^*(X, \mathbb{C})$.
- In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.
- On E_1-page, $E_1^{p,q} \cong H^p(X, \Omega^q_X)$ and E_1-degeneration implies the Hodge decomposition for $H^k(X, \mathbb{C})$.
Hodge-to-de Rham spectral sequence and E_1-degeneration

- Let X be a complex manifold, there is a double complex $(A^*_X, \partial, \bar{\partial})$, i.e. $\partial^2 = \bar{\partial}^2 = \partial \bar{\partial} + \bar{\partial} \partial = 0$.
- If X is Kähler, the associated spectral sequence degenerates at E_1 and converges to de Rham cohomology $H^*(X, \mathbb{C})$.
- In characteristic zero, E_1-degeneration follows from Hodge theory for Kähler manifolds. Deligne and Illusie gave another purely algebraic proof using reduction to finite characteristics.
- On E_1-page, $E_1^{p,q} \cong H^p(X, \Omega^q_X)$ and E_1-degeneration implies the Hodge decomposition for $H^k(X, \mathbb{C})$. In fact, there is a (pure) Hodge structure of weight k on $H^k(X, \mathbb{C})$.
The origin of mirror symmetry

A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.

Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and $X__$. In 1990, Greene and Plesser constructed the mirror for the quintic 3-fold in P_4.

Candelas, de la Ossa, Green and Parkes predicted the genus zero Gromov-Witten invariants (symplectic) of X using period integrals (complex) on the mirror $X__$ (Ref. Givental, Lian-Liu-Yau).
The origin of mirror symmetry

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
The origin of mirror symmetry

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds,
A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.

Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X^\vee.
The origin of mirror symmetry

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X^\vee.
- In 1990, Greene and Plesser constructed the mirror for the quintic 3-fold in \mathbb{P}^4.
The origin of mirror symmetry

- A Calabi-Yau manifold is a complex manifold X such that K_X is trivial, i.e. there is a nonzero holomorphic volume form.
- Mirror symmetry is first discovered for pairs of Calabi-Yau 3-folds, denoted as X and X^\vee.
- In 1990, Greene and Plesser constructed the mirror for the quintic 3-fold in \mathbb{P}^4.
- Candelas, de la Ossa, Green and Parkes predicted the genus zero Gromov-Witten invariants (symplectic) of X using period integrals (complex) on the mirror X^\vee (Ref. Givental, Lian-Liu-Yau).
Symmetry of Hodge diamonds

What does Hodge theory say about mirror pairs?

Let $h_{p,q}(X) := \dim \text{CH}^p(X, \mathcal{L}^q X)$.

They are called Hodge numbers.

Mirror symmetry is manifested as a 90 degree rotation of Hodge diamonds.
Symmetry of Hodge diamonds

- What does Hodge theory say about mirror pairs?
Symmetry of Hodge diamonds

- What does Hodge theory say about mirror pairs?
- Let $h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X)$.
Symmetry of Hodge diamonds

- What does Hodge theory say about mirror pairs?
- Let \(h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X) \). They are called Hodge numbers.
What does Hodge theory say about mirror pairs?

Let \(h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega_X^q) \). They are called Hodge numbers.

The Hodge numbers of the quintic and its mirror looks like:

\[
\begin{array}{cccccccc}
1 & & & & & & & 1 \\
& 0 & 0 & & & & & \\
& & 0 & 1 & 0 & & & \\
& & & 101 & 101 & 1 & & \\
& & & & 1 & 1 & 1 & 1 \\
& & & & & 0 & 101 & 0 \\
& & & & & & 0 & 0 \\
& & & & & & & 1 \\
\end{array}
\]
Symmetry of Hodge diamonds

- What does Hodge theory say about mirror pairs?
- Let \(h^{p,q}(X) := \dim_{\mathbb{C}} H^p(X, \Omega^q_X) \). They are called Hodge numbers.
- The Hodge numbers of the quintic and its mirror looks like

\[
\begin{array}{cccccccc}
1 & & & & & & & 1 \\
0 & 0 & & & 0 & & & 0 \\
0 & 1 & 0 & & 0 & 101 & 0 \\
1 & 101 & 101 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & & 0 & 101 & 0 \\
0 & 0 & & & & 0 & & 0 \\
1 & & & & & & & 1 \\
\end{array}
\]

- Mirror symmetry is manifested as a 90 degree rotation of Hodge diamonds.
Homological Mirror Symmetry (HMS)

- Given a symplectic manifold X and a complex manifold X^\vee

<table>
<thead>
<tr>
<th>Categories</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fuk(X)$</td>
<td>Lagrangian submanifolds</td>
<td>$CF^*(L_0, L_1) = \mathbb{K}\langle L_0 \cap L_1 \rangle$</td>
</tr>
<tr>
<td>$Coh(X^\vee)$</td>
<td>Coherent sheaves</td>
<td>$\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$</td>
</tr>
</tbody>
</table>
Homological Mirror Symmetry (HMS)

- Given a symplectic manifold X and a complex manifold X^\vee

<table>
<thead>
<tr>
<th>Categories</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fuk(X)$</td>
<td>Lagrangian submanifolds</td>
<td>$CF^*(L_0, L_1) = \mathbb{K}\langle L_0 \cap L_1 \rangle$</td>
</tr>
<tr>
<td>$Coh(X^\vee)$</td>
<td>Coherent sheaves</td>
<td>$Ext^*(\mathcal{E}_0, \mathcal{E}_1)$</td>
</tr>
</tbody>
</table>

- In 1994, M. Kontsevich proposed homological mirror symmetry:

Question: Can we use HMS to transfer the well-studied Hodge theory from the complex side to the symplectic side? To do this, need a Hodge theory for categories.
Homological Mirror Symmetry (HMS)

- Given a symplectic manifold X and a complex manifold X^\vee

<table>
<thead>
<tr>
<th>Categories</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fuk(X)$</td>
<td>Lagrangian submanifolds</td>
<td>$CF^*(L_0, L_1) = \mathbb{K}\langle L_0 \cap L_1 \rangle$</td>
</tr>
<tr>
<td>$Coh(X^\vee)$</td>
<td>Coherent sheaves</td>
<td>$Ext^*(\mathcal{E}_0, \mathcal{E}_1)$</td>
</tr>
</tbody>
</table>

- In 1994, M. Kontsevich proposed homological mirror symmetry:
 For mirror Calabi-Yau’s, there are derived equivalences between

 $$Fuk(X) \text{ and } Coh(X^\vee),$$

 $$Coh(X) \text{ and } Fuk(X^\vee).$$
Homological Mirror Symmetry (HMS)

- Given a symplectic manifold X and a complex manifold X^\vee

Categories

- $\text{Fuk}(X)$
- $\text{Coh}(X^\vee)$

Objects

- Lagrangian submanifolds
- Coherent sheaves

Morphisms

- $\text{CF}^*(L_0, L_1) = \mathbb{K}\langle L_0 \cap L_1 \rangle$
- $\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$

In 1994, M. Kontsevich proposed homological mirror symmetry:

For mirror Calabi-Yau’s, there are derived equivalences between

\[\text{Fuk}(X) \text{ and } \text{Coh}(X^\vee), \]

\[\text{Coh}(X) \text{ and } \text{Fuk}(X^\vee). \]

Question: Can we use HMS to transfer the well-studied Hodge theory from the complex side to the symplectic side?
Homological Mirror Symmetry (HMS)

- Given a symplectic manifold X and a complex manifold X^\vee

<table>
<thead>
<tr>
<th>Categories</th>
<th>Objects</th>
<th>Morphisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Fuk(X)$</td>
<td>Lagrangian submanifolds</td>
<td>$CF^*(L_0, L_1) = \mathbb{K}\langle L_0 \cap L_1 \rangle$</td>
</tr>
<tr>
<td>$Coh(X^\vee)$</td>
<td>Coherent sheaves</td>
<td>$\mathcal{E}xt^*(\mathcal{E}_0, \mathcal{E}_1)$</td>
</tr>
</tbody>
</table>

- In 1994, M. Kontsevich proposed homological mirror symmetry:
 For mirror Calabi-Yau’s, there are derived equivalences between

 $Fuk(X)$ and $Coh(X^\vee)$,

 $Coh(X)$ and $Fuk(X^\vee)$.

- Question: Can we use HMS to transfer the well-studied Hodge theory from the complex side to the symplectic side? To do this, need a Hodge theory for categories.
Noncommutative Hodge-to-de Rham spectral sequence

Given an associative algebra A, on Hochschild chains $C^\bullet(A)$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

$HH^\bullet(A) = H^\bullet(C^\bullet(A), b)$,
$HC^\bullet(A) = H^\bullet(C^\bullet(A), b + uB)$, $|u| = 2$.

If A is the coordinate ring of a smooth affine variety X, then the Hochschild-Konstant-Rosenberg says $HH^\bullet(A) \hookrightarrow \implies \implies \Sigma^\bullet X$, and moreover $HKR : (HH^\bullet(A), B) \mapsto (\Sigma^\bullet X, d_{dR})$ is a map.

For associative algebra, or a differential graded (DG) category A (such as $\text{Coh}(X)$), one can replace the Hodge-to-de Rham spectral sequence $H^p(X, \Sigma^q X) \mapsto$ by Hochschild-to-cyclic spectral sequence $HH^p(A) \hookrightarrow \implies HC^{p+q}(A)$.
Given an associative algebra \mathcal{A}, on Hochschild chains $C_\ast(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.
Noncommutative Hodge-to-de Rham spectral sequence

Given an associative algebra \mathcal{A}, on Hochschild chains $C_*(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

$HH_*(\mathcal{A}) = H_*(C_*(\mathcal{A}), b)$,
Given an associative algebra A, on Hochschild chains $C_*(A)$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

$HH_*(A) = H_*(C_*(A), b)$,
$HC_*(A) = H_*(C_*(A)[u], b + uB), \quad |u| = -2$.
Given an associative algebra \mathcal{A}, on Hochschild chains $C_*(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

$HH_*(\mathcal{A}) = H_*(C_*(\mathcal{A}), b),$
$HC_*(\mathcal{A}) = H_*(C_*(\mathcal{A})[u], b + uB), \quad |u| = -2.$

If \mathcal{A} is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says $HH_*(\mathcal{A}) \cong \Omega^*_X$, and moreover $HKR: (HH_*(\mathcal{A}), B) \to (\Omega^*_X, d_{dR})$ is a chain map.
Noncommutative Hodge-to-de Rham spectral sequence

- Given an associative algebra \mathcal{A}, on Hochschild chains $C_*(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

\[HH_*(\mathcal{A}) = H_*(C_*(\mathcal{A}), b), \]
\[HC_*(\mathcal{A}) = H_*(C_*(\mathcal{A})[u], b + uB), \quad |u| = -2. \]

- If \mathcal{A} is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says $HH_*(\mathcal{A}) \cong \Omega_X^*$, and moreover $HKR: (HH_*(\mathcal{A}), B) \rightarrow (\Omega_X^*, d_{dR})$ is a chain map.

- For associative algebra, or a differential graded (DG) category \mathcal{A} (such as $\text{Coh}(X)$), one can replace
Given an associative algebra \mathcal{A}, on Hochschild chains $C_\ast(\mathcal{A})$ one has two differentials, the Hochschild differential b and Connes differential B, such that $bB + Bb = 0$.

$HH_\ast(\mathcal{A}) = H_\ast(C_\ast(\mathcal{A}), b)$,
$HC_\ast(\mathcal{A}) = H_\ast(C_\ast(\mathcal{A})[u], b + uB), \quad |u| = -2$.

If \mathcal{A} is the coordinate ring of a smooth affine variety X, the Hochschild-Konstant-Rosenberg says $HH_\ast(\mathcal{A}) \cong \Omega^\ast_X$, and moreover $HKR: (HH_\ast(\mathcal{A}), B) \to (\Omega^\ast_X, d_{dR})$ is a chain map.

For associative algebra, or a differential graded (DG) category \mathcal{A} (such as $\text{Coh}(X)$), one can replace Hodge-to-de Rham spectral sequence $H^p(X, \Omega^q_X) \Longrightarrow H^{p+q}(X, \mathbb{C})$ by Hochschild-to-cyclic spectral sequence $HH_p(\mathcal{A})u^q \Longrightarrow HC_{p+q}(\mathcal{A})$.
Previous studies on Hodge theoretic aspects

Let A be a smooth and proper DG category. (e.g. $\text{Coh}(X)$ of a projective variety, proper: morphisms space in A has finite homological dimension.) Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for A. Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories. Ganatra, Perutz and Sheridan in 2015 used noncommutative Hodge theory to show that HMS for Calabi-Yau manifolds implies enumerative mirror symmetry for the quintic.
Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. $\text{Coh}(X)$ of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)
Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. $Coh(X)$ of a projective variety, \textbf{proper}: morphism space in \mathcal{A} has finite homological dimension.)

- Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for \mathcal{A}.

- Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories.

- Ganatra, Perutz and Sheridan in 2015 used noncommutative Hodge theory to show that HMS for Calabi-Yau manifolds implies enumerative mirror symmetry for the quintic.
Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. $\text{Coh}(X)$ of a projective variety, **proper**: morphism space in \mathcal{A} has finite homological dimension.)

- Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for \mathcal{A}.
- Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories.

Ganatra, Perutz and Sheridan in 2015 used noncommutative Hodge theory to show that HMS for Calabi-Yau manifolds implies enumerative mirror symmetry for the quintic.
Previous studies on Hodge theoretic aspects

Let \mathcal{A} be a smooth and proper DG category. (e.g. $\text{Coh}(X)$ of a projective variety, \textit{proper}: morphism space in \mathcal{A} has finite homological dimension.)

- Barannikov and Kontsevich-Katzarkov-Pantev have developed noncommutative Hodge theories for \mathcal{A}.
- Kaledin in 2016 proved the degeneration of noncommutative Hodge-to-de Rham spectral sequence for smooth and proper DG categories.
- Ganatra, Perutz and Sheridan in 2015 used noncommutative Hodge theory to show that HMS for Calabi-Yau manifolds implies enumerative mirror symmetry for the quintic.
Mirror symmetry for open manifolds

Prototype: The mirror pair $X = C^\times$ and $X__ = C^\times$. If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports. E.g. Take the structure sheaf O_{C^\times}, the morphism space $\text{Ext}^\times(O_{C^\times}, O_{C^\times}) = C[z, z^{-1}]$ is infinite dimensional.

In order for HMS to hold, one needs a version of Fukaya category which is possibly nonproper. This is the wrapped Fukaya category $W(X)$ (Abouzaid-Seidel).

For open manifolds $U = X \setminus D$ where X is a compact Kähler manifold and D is a normal crossing divisor, Deligne in 1971 constructed a mixed Hodge structure on $H^\bullet(U, \mathbb{C}) = H^\bullet(X, \mathcal{I}^\bullet_X(\log D))$.

Hodge theory aspects of HMS
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports.
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$,
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $\text{Ext}^*(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.
- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports.
- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $\text{Ext}^\ast(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.
- In order for HMS to hold, one needs a version of Fukaya category which is possibly nonproper. This is the wrapped Fukaya category $\mathcal{W}(X)$ (Abouzaid-Seidel).
Mirror symmetry for open manifolds

- Prototype: The mirror pair $X = \mathbb{C}^*$ and $X^\vee = \mathbb{C}^*$.

- If one only allows compactly supported coherent sheaves in the category, then the only objects are skyscraper sheaves. It’s more natural to consider coherent sheaves with noncompact supports.

- E.g. Take the structure sheaf $\mathcal{O}_{\mathbb{C}^*}$, the morphism space $\text{Ext}^*(\mathcal{O}_{\mathbb{C}^*}, \mathcal{O}_{\mathbb{C}^*}) = \mathbb{C}[z, z^{-1}]$ is infinite dimensional.

- In order for HMS to hold, one needs a version of Fukaya category which is possibly nonproper. This is the wrapped Fukaya category $\mathcal{W}(X)$ (Abouzaid-Seidel).

- For open manifolds $U = X \setminus D$ where X is a compact Kähler manifold and D is a normal crossing divisor, Deligne in 1971 constructed a mixed Hodge structure on $H^*(U, \mathbb{C}) = \mathbb{H}^*(X, \Omega^\bullet_X(\log D))$.
Questions and future directions

Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for $\mathcal{W}(X)$?

Q2: If it does not degenerate at E_1-page, does it degenerate at E_2-page or so on?

Q3: Given a (nondegenerate) Liouville manifold, by Ganatra $\text{HH}^\bullet(W(M)) \hookrightarrow = \text{SH}^\bullet + n(M)$ and $\text{HC}^\bullet(W(M)) \hookrightarrow = \text{SH}^\bullet + nS_1(M)$. When the spectral sequence degenerate at E_1, it induces a "Hodge" filtration. It is a symplectic invariant, does it respect symplectomorphisms?
Questions and future directions

Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for $\mathcal{W}(X)$? By Kaledin, degenerate if $\mathcal{W}(M)$ is proper.
Questions and future directions

- **Q1:** When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for $\mathcal{W}(X)$? By Kaledin, degenerate if $\mathcal{W}(M)$ is proper.

- **Q2:** If it does not degenerate at E_1-page, does it degenerate at E_2-page or so on?

- **Q3:** Given a (nondegenerate) Liouville manifold, by Ganatra $\mathrm{HH}^* (\mathcal{W}(M)) \hookrightarrow \mathrm{SH}^* + n(M)$ and $\mathrm{HC}^* (\mathcal{W}(M)) \hookrightarrow \mathrm{SH}^* + n S^1(M)$.

When the spectral sequence degenerates at E_1, it induces a “Hodge” filtration. It is a symplectic invariant, does it respect symplectomorphisms?
Questions and future directions

Q1: When does the Hodge-to-de Rham (Hochschild to cyclic homology) spectral sequence degenerate for $\mathcal{W}(X)$? By Kaledin, degenerate if $\mathcal{W}(M)$ is proper.

Q2: If it does not degenerate at E_1-page, does it degenerate at E_2-page or so on?

Q3: Given a (nondegenerate) Liouville manifold, by Ganatra $HH_*(\mathcal{W}(M)) \cong SH^{*+n}(M)$ and $HC_*(\mathcal{W}(M)) \cong SH^{*+n}_{S^1}(M)$. When the spectral sequence degenerates at E_1, it induces a "Hodge" filtration. It is a symplectic invariant, does it respect symplectomorphisms?
Thank you!