Spectra of non-normal random matrices and noise stability

Ofer Zeitouni
Weizmann Institute
March 2014
Consider the nilpotent N-by-N matrix

$$T_N = \begin{pmatrix}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & \ldots & \ldots & 0 & 1 \\
0 & \ldots & \ldots & \ldots & 0 & 0
\end{pmatrix}$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$. Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma > 1/2$, $\|N^{-\gamma} G_N\| \to 0$, almost surely.
Consider the nilpotent N-by-N matrix

$$T_N = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & 0 & 1 \\ 0 & \cdots & \cdots & \cdots & 0 \end{pmatrix}$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$.

Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma > 1/2$, $\|N^{-\gamma} G_N\| \to 0$, almost surely.
Consider the nilpotent N-by-N matrix

$$T_N = \begin{pmatrix}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots & \cdots \\
0 & \cdots & \cdots & 0 & 1 \\
0 & \cdots & \cdots & \cdots & 0 \\
\end{pmatrix}$$

Eigenvalues $\lambda_i = 0$, empirical measure $n^{-1} \sum \delta_{\lambda_i} = \delta_0$. Let G_N be a matrix with i.i.d. standard Gaussians. For $\gamma > 1/2$, $\|N^{-\gamma}G_N\| \rightarrow 0$, almost surely.
Theorem (Guionnet-Wood-Z. ’11)

Set \(A_N = T_N + N^{-\gamma} G_N \), eigenvalues \(\eta_i \), empirical measure \(L^A_N = n^{-1} \sum \delta_{\eta_i} \). \(\gamma > 1/2 \). Then \(L^A_N \) converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, \(L^T_N = \delta_0 \) but for a vanishing perturbation, \(L^A_N \) has different limit. (Generalization to i.i.d. \(G_N \): Wood ’13.)
Theorem (Guionnet-Wood-Z. ’11)

Set $A_N = T_N + N^{-\gamma} G_N$, eigenvalues η_i, empirical measure $L^A_N = n^{-1} \sum \delta_{\eta_i}$. $\gamma > 1/2$. Then L^A_N converges weakly to the uniform measure on the unit circle in the complex plane.

Thus, $L^T_N = \delta_0$ but for a vanishing perturbation, L^A_N has different limit. (Generalization to i.i.d. G_N: Wood ’13.)
A_N - $N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in $*$-moments toward an element a in a \mathcal{W}^*
probability space $(\mathcal{A}, \| \cdot \|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,$\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*))$.

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))$.

Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z - a) = \int \log |z - z'| d\nu_a(z'), \quad z \in \mathbb{C}. $$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a - z)).$$

In particular $\log \det(z - a) = \int \log x \ d\nu^Z_a(x) \quad z \in \mathbb{C}$, where ν^Z_a denotes the spectral measure of the operator $|z - a|$.
A_N - $N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in $*$-moments toward an element a in a W^* probability space $(\mathcal{A}, \|\cdot\|, *, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)) .$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|)) .

Brown measure ν_a of $a \in \mathcal{A}$:

$$\log \det(z - a) = \int \log |z - z'| d\nu_a(z'), \quad z \in \mathbb{C} .$$

Given by

$$\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a - z)) .$$

In particular $\log \det(z - a) = \int \log x \, d\nu^Z_a(x) \quad z \in \mathbb{C} , \text{ where } \nu^Z_a \text{ denotes the spectral measure of the operator } |z - a|$.
A_N - N \times N matrix, uniformly bounded in operator norm.

Definitions: \(A_N \) converges in \(*\)-moments toward an element \(a \) in a \(\mathcal{W}^* \) probability space \((\mathcal{A}, \| \cdot \|, *, \phi)\) (faithful trace \(\phi \)) if for any non-commutative polynomial \(P \),

\[
\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).
\]

Fuglede–Kadison Determinant \(\text{det}(a) = \exp(\phi(\log |a|)) \).

Brown measure \(\nu_a \) of \(a \in \mathcal{A} \):

\[
\log \text{det}(z - a) = \int \log |z - z'| d\nu_z(z'), \quad z \in \mathbb{C}.
\]

Given by

\[
\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\text{det}(a - z)).
\]

In particular \(\log \text{det}(z - a) = \int \log x \ d\nu^z_a(x) \quad z \in \mathbb{C} \), where \(\nu^z_a \) denotes the spectral measure of the operator \(|z - a|\).
Background

A_N - $N \times N$ matrix, uniformly bounded in operator norm.

Definitions: A_N converges in \ast-moments toward an element a in a W^* probability space $(\mathcal{A}, \| \cdot \|, \ast, \phi)$ (faithful trace ϕ) if for any non-commutative polynomial P,

$$
\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)�)
$$

Fuglede–Kadison Determinant $\det(a) = \exp(\phi(\log |a|))�$

Brown measure ν_a of $a \in \mathcal{A}$:

$$
\log \det(z - a) = \int \log |z - z'| d\nu_a(z'), \quad z \in \mathbb{C}�
$$

Given by

$$
\nu_a(dz) = \frac{1}{2\pi} \Delta z \log(\det(a - z))�
$$

In particular $\log \det(z - a) = \int \log x d\nu_a^z(x), \quad z \in \mathbb{C},$ where ν_a^z denotes the spectral measure of the operator $|z - a|$.
Background

\(A_N \) - \(N \times N \) matrix, uniformly bounded in operator norm.
Definitions: \(A_N \) converges in \(*\)-moments toward an element \(a \) in a \(\mathcal{W}^* \) probability space \((\mathcal{A}, \| \cdot \|, *, \phi)\) (faithful trace \(\phi \)) if for any non-commutative polynomial \(P \),

\[
\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).
\]

Fuglede–Kadison Determinant \(\det(a) = \exp(\phi(\log |a|)) \).

Brown measure \(\nu_a \) of \(a \in \mathcal{A} \):

\[
\log \det(z - a) = \int \log |z - z'| d\nu_a(z'), \quad z \in \mathbb{C}.
\]

Given by

\[
\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a - z)).
\]

In particular \(\log \det(z - a) = \int \log x \ d\nu^z_a(x) \quad z \in \mathbb{C} \), where \(\nu^z_a \) denotes the spectral measure of the operator \(|z - a| \).
A_N - N \times N matrix, uniformly bounded in operator norm.

Definitions: \(A_N \) converges in \(*\)-moments toward an element \(a \) in a \(\mathcal{W}^* \) probability space \((\mathcal{A}, \| \cdot \|, *, \phi) \) (faithful trace \(\phi \)) if for any non-commutative polynomial \(P \),

\[
\frac{1}{N} \text{tr} P(A_N, A_N^*) \xrightarrow{N \to \infty} \phi(P(a, a^*)).
\]

Fuglede–Kadison Determinant \(\det(a) = \exp(\phi(\log |a|)) \).

Brown measure \(\nu_a \) of \(a \in \mathcal{A} \):

\[
\log \det(z - a) = \int \log |z - z'| d\nu_a(z'), \quad z \in \mathbb{C}.
\]

Given by

\[
\nu_a(dz) = \frac{1}{2\pi} \Delta_z \log(\det(a - z)).
\]

In particular \(\log \det(z - a) = \int \log x \ d\nu_a^z(x) \quad z \in \mathbb{C} \), where \(\nu_a^z \) denotes the spectral measure of the operator \(|z - a| \).
Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady '02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1} \text{tr}(f(\Sigma_A(t))) \geq N^{-1} \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume $A_N \to^\ast a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume \(A_N \to^* a \). Define \(A_N(t) = A_N + tN^{-1/2}G_N \).

Theorem (Śniady ’02)

\[
\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.
\]

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values
\(\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A) \) of \(A_N + tN^{-1/2}G_N \) to the singular values
\(\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N) \) of \(tN^{-1/2}G_N \); by coupling the SDEs for the evolution of \(\Sigma, \Sigma_A \), for \(f \) coordinate-wise increasing,

\[
N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).
\]

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take \(t = t_N \to 0 \)?
Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1} \text{tr}(f(\Sigma_A(t))) \geq N^{-1} \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1} \text{tr}(f(\Sigma_A(t))) \geq N^{-1} \text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume $A_N \rightarrow^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values

$\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values

$\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Śniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$
In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values $\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$ of $A_N + tN^{-1/2}G_N$ to the singular values $\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$ of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Assume $A_N \to^* a$. Define $A_N(t) = A_N + tN^{-1/2}G_N$.

Theorem (Sniady ’02)

$$\lim_{t \to 0} \lim_{N \to \infty} L_N^{A_N(t)} = \nu_a.$$

In particular, some sequence of noise regularizes empirical measure to the Brown measure.

Main ingredient of proof compares the singular values
$$\Sigma_A(t) = (\sigma_1^A, \ldots, \sigma_N^A)$$
of $A_N + tN^{-1/2}G_N$ to the singular values
$$\Sigma_0(t) = (\sigma_1, \ldots, \sigma_N)$$
of $tN^{-1/2}G_N$; by coupling the SDEs for the evolution of Σ, Σ_A, for f coordinate-wise increasing,

$$N^{-1}\text{tr}(f(\Sigma_A(t))) \geq N^{-1}\text{tr}(f(\Sigma_0(t))).$$

This gives required control of the determinant; Second part of theorem follows by diagonalization argument.

How can we take $t = t_N \to 0$?
Noise Stability-Maximal Nilpotent

\(\mathbf{a} \in \mathcal{A} \) is regular if for \(f \) smooth, compactly supported,

\[
\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_{0}^{\epsilon} \log x \, d\nu^{z}_{a}(x) \right) \, dz = 0
\]

Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_{N} \to^{*} a \), regular. \(L_{N}^{A} \to \nu_{a} \) weakly. \(\gamma > 1/2 \). Then,

\(L_{N}^{A_{N} + N^{-\gamma} G_{N}} \to \nu_{a} \) weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to \(\nu_{a} \). But it is not useful in maximally nilpotent example, since \(L_{N}^{A} = \delta_{0} \not\to \nu_{a} = \delta_{S^{1}} \).
Noise Stability-Maximal Nilpotent

\(a \in \mathcal{A} \) is regular if for \(f \) smooth, compactly supported,

\[
\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_z^a(x) \right) \, dz = 0
\]

Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_N \to^* a, \text{ regular}. \) \(L_N^A \to \nu_a \) weakly. \(\gamma > 1/2. \) Then,

\[
L_N^{A_N + N^{-\gamma} G_N} \to \nu_a \text{ weakly, in probability.}
\]

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to \(\nu_a. \) But it is not useful in maximally nilpotent example, since \(L_N^A = \delta_0 \not\to \nu_a = \delta_{S^1}. \)
Noise Stability-Maximal Nilpotent

\(a \in \mathcal{A} \) is regular if for \(f \) smooth, compactly supported,

\[
\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu^z_a(x) \right) \, dz = 0
\]

Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_N \to^* a, \) regular. \(L^A_N \to \nu_a \) weakly. \(\gamma > 1/2. \) Then,

\[
L_{N+1}^{A_N+1} \to \nu_a \text{ weakly, in probability.}
\]

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to \(\nu_a. \) But it is not useful in maximally nilpotent example, since \(L^A_N = \delta_0 \nrightarrow \nu_a = \delta_{S^1}. \)
\(a \in \mathcal{A} \) is regular if for \(f \) smooth, compactly supported,

\[
\lim_{\epsilon \to 0} \int \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu_a^z(x) \right) \, dz = 0
\]

Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_N \to^* a, \text{ regular. } L_N^A \to \nu_a \text{ weakly. } \gamma > 1/2 \). Then,

\[
L_N^{A_N + N^{-\gamma} G_N} \to \nu_a \text{ weakly, in probability.}
\]

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to \(\nu_a \). But it is not useful in maximally nilpotent example, since \(L_N^A = \delta_0 \nrightarrow \nu_a = \delta_{S^1} \).
$a \in A$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu^z_a(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \to^* a$, regular. $L^A_N \to \nu_a$ weakly. $\gamma > 1/2$. Then,

$L^{A_N + N^{-\gamma} G_N}_N \to \nu_a$ weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to ν_a. But it is not useful in maximally nilpotent example, since $L^A_N = \delta_0 \not\to \nu_a = \delta_{S^1}$.
a ∈ A is regular if for f smooth, compactly supported,

\[
\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu^z_a(x) \right) \, dz = 0
\]

Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_N \to^* a, \) regular. \(L^A_N \to \nu_a \) weakly. \(\gamma > 1/2. \) Then,

\(L^A_{N+N^{-\gamma}G_N} \to \nu_a \) weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to \(\nu_a. \) But it is not useful in maximally nilpotent example, since \(L^A_N = \delta_0 \not\to \nu_a = \delta_{S^1}. \)
$a \in \mathcal{A}$ is regular if for f smooth, compactly supported,

$$\lim_{\epsilon \to 0} \int_{\mathbb{C}} \Delta \psi(z) \left(\int_0^\epsilon \log x \, d\nu^z_a(x) \right) \, dz = 0$$

Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \rightarrow^* a$, regular. $L^A_N \rightarrow \nu_a$ weakly. $\gamma > 1/2$. Then,

$L^A_N + N^{-\gamma} G_N \rightarrow \nu_a$ weakly, in probability.

The proof uses the regularity (of the limit) to truncate the singularity of the log... and depends crucially on convergence to ν_a. But it is not useful in maximally nilpotent example, since $L^A_N = \delta_0 \not\rightarrow \nu_a = \delta_{S^1}$.
Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \to^* a$, regular, $\|E_N\| \to 0$ polynomially. $L_N^{A_N + E_N} \to \nu_a$ weakly. Then $L_N^{A_N + (N^{-\gamma} G_N)} \to \nu_a$ weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior! Nilpotent example uses a- unitary element (which is regular), E_N is $(N, 1)$ element.
Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \to^* a$, regular, $\|E_N\| \to 0$ polynomially. $L_N^{A_N + E_N} \to \nu_a$ weakly. Then $L_N^{A_N + N^{-\gamma} G_N} \to \nu_a$ weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior! Nilpotent example uses a-unitary element (which is regular), E_N is $(N, 1)$ element.
Theorem (Guionnet-Wood-Z. ’11)

Assume: \(A_N \to^* a, \) regular, \(\| E_N \| \to 0 \) polynomially. \(L_N^{A_N+E_N} \to \nu_a \) weakly. Then \(L_N^{A_N+N^{-\gamma}G_N} \to \nu_a \) weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior! Nilpotent example uses \(a \)- unitary element (which is regular), \(E_N \) is \((N, 1)\) element.
Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \rightarrow^* a$, regular, $\|E_N\| \rightarrow 0$ polynomially. $L^A_N + E_N \rightarrow \nu_a$ weakly. Then $L^{A_N+N^{-\gamma}G_N}_N \rightarrow \nu_a$ weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior!

Nilpotent example uses a- unitary element (which is regular), E_N is $(N, 1)$ element.
Theorem (Guionnet-Wood-Z. ’11)

Assume: $A_N \rightarrow^* a$, regular, $\|E_N\| \rightarrow 0$ polynomially. $L_N^{A_N+E_N} \rightarrow \nu a$ weakly. Then $L_N^{A_N+N^{-\gamma}G_N} \rightarrow \nu a$ weakly, in probability.

So it is enough to find a perturbation with correct limiting behavior! Nilpotent example uses a- unitary element (which is regular), E_N is $(N, 1)$ element.
Noise Stability-Maximal Nilpotent

\[L_N^{A_N + E_N} \rightarrow S^1 \]

eigenvalues

\[E_N^{1/N} \]
Noise Stability - Nilpotent matrices

Maybe this always works?

\[T_{b,N} = \begin{bmatrix} T_b & & & \\ & T_b & & \\ & & \ddots & \\ & & & T_b \end{bmatrix} \]

where \(T_b \) is maximally nilpotent of dimension \(b \).

Theorem (Guionnet-Wood-Z '11)

If \(b = a \log N \) and \(\gamma \) is large enough, then the spectral radius of \(T_{b,N} + N^{-\gamma} G_N \) is uniformly strictly smaller than 1. In particular,

\[L_N^{T_{a \log N, N} + N^{-\gamma} G_N} \not\xrightarrow{} \delta_{S^1} \]

even though \(T_{a \log N, N} \) converges in \(\ast \) moments to random unitary!

What is going on?
Noise Stability-Nilpotent matrices

Maybe this always works?

\[
T_{b,N} = \begin{bmatrix}
T_b & & \\
& T_b & \\
& & \ddots \\
& & & T_b
\end{bmatrix}
\]

where \(T_b \) is maximally nilpotent of dimension \(b \).

Theorem (Guionnet-Wood-Z ’11)

If \(b = a \log N \) and \(\gamma \) is large enough, then the spectral radius of
\(T_{b,N} + N^{-\gamma} G_N \) is uniformly strictly smaller than \(1 \). In particular,

\[
L_N^{T_{a \log N, N+N^{-\gamma} G_N}} \not\to \delta_{S^1}
\]

even though \(T_{a \log N, N} \) converges in \(*\) moments to random unitary!

What is going on?
Noise Stability-Nilpotent matrices

Maybe this always works?

\[T_{b,N} = \begin{bmatrix} T_b & & \\ & T_b & \\ & & \ddots \ & T_b \end{bmatrix} \]

where \(T_b \) is maximally nilpotent of dimension \(b \).

\textbf{Theorem (Guionnet-Wood-Z ’11)}

If \(b = a \log N \) and \(\gamma \) is large enough, then the spectral radius of \(T_{b,N} + N^{-\gamma} G_N \) is uniformly strictly smaller than 1. In particular,

\[L_N^{T_{a \log N,N} + N^{-\gamma} G_N} \not\to \delta_{S^1} \]

even though \(T_{a \log N,N} \) converges in * moments to random unitary!

What is going on?

Ofer Zeitouni
Maybe this always works?

\[T_{b,N} = \begin{bmatrix} T_b & & \\ & T_b & \\ & & \ddots \\ & & & T_b \end{bmatrix} \]

where \(T_b \) is maximally nilpotent of dimension \(b \).

Theorem (Guionnet-Wood-Z ’11)

If \(b = a \log N \) and \(\gamma \) is large enough, then the spectral radius of \(T_{b,N} + N^{-\gamma} G_N \) is uniformly strictly smaller than 1. In particular,

\[L_N^{T_{a \log N, N} + N^{-\gamma} G_N} \not\to \delta_{S^1} \]

even though \(T_{a \log N, N} \) converges in \(* \) moments to random unitary!

What is going on?
Simulations inconclusive!

\[
\text{In block: } \left(N^{-\sigma} \right)^{\alpha \log n} \sim e^{-\alpha a}
\]
Simulations inconclusive!

In block: \((N^{-\frac{1}{2}})^{\log N} \approx e^{-\frac{1}{\sqrt{N}}} \)

\(Q \) \(\delta \) \(e^{-\frac{1}{\sqrt{N}}} \)
Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

$$A_N = \begin{bmatrix} B^1 & \ & \ \\ & B^2 & \ \\ & & \ldots \ \\ & & & B^\ell(N) \end{bmatrix}.$$
Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

$$A_N = \begin{bmatrix} B^1 & & \\ & B^2 & \\ & & \ddots \\ & & & B^\ell(N) \end{bmatrix}.$$
Framework: $B^i = B^i(N)$ - Jordan blocks, dimension $a_i(N) \log N$, eigenvalue $c_i(N)$.

$$A_N = \begin{bmatrix} B^1 & & \\ & B^2 & \\ & & \ddots \\ & & & B^{\ell(N)} \end{bmatrix}.$$

Simulations...
Simulations inconclusive!

\[\Re z \gamma = 1.0 \]

\[\Re z \gamma = 0.8 \]
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{(-\gamma+1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c, r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’14)

For $\gamma > 1$ and $\ell(N) = o(N/\log \log(N))$,

$$d(L_{B_N}^{B_N}, \mu_N) \to_{N \to \infty} 0$$

Analogous result for $\gamma \in (1/2, \]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c, r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’14)

For $\gamma > 1$ and $\ell(N) = o(N/\log \log(N))$,

$$d(L_{B_N}^{B_N}, \mu_N) \rightarrow_{N \rightarrow \infty} 0$$

Analogous result for $\gamma \in (1/2, \]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{(-\gamma + 1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i, r_i}$ where $\nu_{c, r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’14)

For $\gamma > 1$ and $\ell(N) = o(N/\log \log(N))$,

$$d(L_{\mu_N}^{B_N}, \mu_N) \to_{N \to \infty} 0$$

Analogous result for $\gamma \in (1/2,]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
\(A_N \) block matrix, each block of size \(a_i \log N \). \(c_i \) on diagonal.

\(B_N = A_N + N^{-\gamma} G_N. \)

Define \(r_i(N) = e^{(-\gamma+1/2)/a_i} \leq 1 \). Set \(\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i,r_i} \) where \(\nu_{c,r} \) uniform on circle of radius \(r \) centered on \(c \).

Theorem (Feldheim, Paquette, Z. ’14)

For \(\gamma > 1 \) and \(\ell(N) = o(N/\log \log(N)) \),

\[
d(L_{B_N}^{\mu_N}, \mu_N) \rightarrow_{N \rightarrow \infty} 0
\]

Analogous result for \(\gamma \in (1/2, 1] \) if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{(-\gamma+1/2)/a_i} \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i,r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’14)

For $\gamma > 1$ and $\ell(N) = o(N/\log \log(N))$,

$$d(L_{B_N}^{B_N}, \mu_N) \rightarrow_{N \to \infty} 0$$

Analogous result for $\gamma \in (1/2,]$ if collection of circles “does not spread too much” (e.g., olympics rings example OK).
A_N block matrix, each block of size $a_i \log N$. c_i on diagonal.

$B_N = A_N + N^{-\gamma} G_N$.

Define $r_i(N) = e^{-\gamma + 1/2}/a_i \leq 1$. Set $\mu_N = \frac{1}{N} \sum_{i=1}^{\ell(N)} a_i \log N \nu_{c_i,r_i}$ where $\nu_{c,r}$ uniform on circle of radius r centered on c.

Theorem (Feldheim, Paquette, Z. ’14)

For $\gamma > 1$ and $\ell(N) = o(N/\log \log(N))$,

$$d(L_{B_N}^{B_N}, \mu_N) \to_{N \to \infty} 0$$

Analogous result for $\gamma \in (1/2, \] if collection of circles “does not spread too much” (e.g., olympics rings example OK).
Again, logarithmic potential plays a crucial role in the proof.
By general results, enough to show that for Lebesgue a.e. \(z \),

\[
|U_{LB}^N(z) - U_{\mu_N}(z)| \to 0,
\]

in probability, where \(U_\nu(z) = \int \log |z - x| \nu(dx) \).
For \(L_N^B \), \(U_{LB}^N(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^* \).
In estimating it, an important role is played by lower bounding the determinant of \(A + G_n \) independently of \(A \), for appropriate \(n \leq N \).
Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L_B}(z) - U_{\mu_N}(z)| \to 0,$$

in probability, where $U_{\nu}(z) = \int \log |z - x|\nu(dx)$.

For L_B^B, $U_{L_B^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$. In estimating it, an important role is played by lower bounding the determinant of $A + G_n$ independently of A, for appropriate $n \leq N$.
Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|U_{L_B}(z) - U_{\mu_N}(z)| \to 0,$$

in probability, where $U_\nu(z) = \int \log|z - x|\nu(dx)$. For L_N^B, $U_{L_N^B}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^*$.

In estimating it, an important role is played by lower bounding the determinant of $A + G_n$ independently of A, for appropriate $n \leq N$.
Again, logarithmic potential plays a crucial role in the proof. By general results, enough to show that for Lebesgue a.e. z,

$$|U_{LB}(z) - U_{\mu_N}(z)| \to 0,$$

in probability, where $U_{\nu}(z) = \int \log |z - x| \nu(dx)$.

For L^B_N, $U_{LB}(z) = \frac{1}{2N} \log \det(z - B_N)(z - B_N)^\ast$.

In estimating it, an important role is played by lower bounding the determinant of $A + G_n$ independently of A, for appropriate $n \leq N$.
Sketch of UB: all blocks equal, $c=0$

Consider separately $|z_1|$ small & $|z_1|$ large.

$$\det \begin{pmatrix} Z_{-1} & 0 \\ 0 & Z \end{pmatrix} = \frac{1}{Z^N} \det \begin{pmatrix} Z_{-1} & \xi \\ \xi^T & 1 \end{pmatrix}$$

Expand in minors: main minors $= 1$, z_{-1} minors:

$$(Z_{-1})^N \cdot (N^{-\delta})^2 \cdot \det (G)_{2 \times 2}$$

$$\approx (Z_{-1})^N \cdot N^{-\delta} \cdot N^{1/2} (1+o(1))$$

For $|z_1|$ small, competition between main diag & off diag - better win.

For $|z_1|$ large - 1 wins. Cutoff at scales.
As in UB, perform row and column permutations and then write

\[B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix} , \]

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

\[\det(B_N - zI) = \det(T + G_1) \det(G_2 - C) \]

For Gaussian matrices \(G_2 \), easy to bound second determinant from below, independently of \(C \), by height \(\times \) area formula. For non-Gaussian noise, no general estimates for minimum singular values if \(C \) is arbitrary (i.e. no prior assumption on norm of \(C \! \)).
As in UB, perform row and column permutations and then write

\[B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix}, \]

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

\[\det(B_N - zI) = \det(T + G_1) \det(G_2 - C) \]

For Gaussian matrices \(G_2 \), easy to bound second determinant from below, independently of \(C \), by height \(\times \) area formula. For non-Gaussian noise, no general estimates for minimum singular values if \(C \) is arbitrary (i.e. no prior assumption on norm of \(C \)).
As in UB, perform row and column permutations and then write

\[B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix} , \]

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

\[\det(B_N - zI) = \det(T + G_1) \det(G_2 - C) \]

For Gaussian matrices \(G_2 \), easy to bound second determinant from below, independently of \(C \), by height \(\times \) area formula.

For non-Gaussian noise, no general estimates for minimum singular values if \(C \) is arbitrary (i.e. no prior assumption on norm of \(C \)).
As in UB, perform row and column permutations and then write

\[B_N - zI = \begin{bmatrix} T + G_1 & * \\ * & G_2 \end{bmatrix}, \]

We need to fight cancelations between possible contributions to the determinant. Using Schur complement,

\[\det(B_N - zI) = \det(T + G_1) \det(G_2 - C) \]

For \textbf{Gaussian} matrices \(G_2 \), easy to bound second determinant from below, independently of \(C \), by height \(\times \) area formula. For non-Gaussian noise, no general estimates for minimum singular values if \(C \) is arbitrary (i.e. no prior assumption on norm of \(C \)).