Emily Riehl

Johns Hopkins University

The synthetic theory of ∞-categories vs the synthetic theory of ∞-categories

joint with Dominic Verity and Michael Shulman

Vladimir Voevodsky Memorial Conference
The motivation for ∞-categories

Mere 1-categories are insufficient habitats for sophisticated mathematical objects like motives that have higher-dimensional transformations encoding relevant “higher homotopical information.”
The motivation for ∞-categories

Mere 1-categories are insufficient habitats for sophisticated mathematical objects like motives that have higher-dimensional transformations encoding relevant “higher homotopical information.”

A better setting is given by ∞-categories, where the usual sets of morphisms are enriched to spaces of morphisms.
The motivation for ∞-categories

Mere 1-categories are insufficient habitats for sophisticated mathematical objects like motives that have higher-dimensional transformations encoding relevant “higher homotopical information.”

A better setting is given by ∞-categories, where the usual sets of morphisms are enriched to spaces of morphisms.

Thus, we want to extend 1-category theory (e.g., adjunctions, limits and colimits, universal properties, Kan extensions) to ∞-category theory.
Mere 1-categories are insufficient habitats for sophisticated mathematical objects like motives that have higher-dimensional transformations encoding relevant “higher homotopical information.”

A better setting is given by ∞-categories, where the usual sets of morphisms are enriched to spaces of morphisms.

Thus, we want to extend 1-category theory (e.g., adjunctions, limits and colimits, universal properties, Kan extensions) to ∞-category theory.

First problem: it is hard to say exactly what an ∞-category is.
The idea of an ∞-category

∞-categories are the nickname that Lurie gave to $(\infty, 1)$-categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

- objects
- 1-arrows between these objects

The idea of an ∞-category

∞-categories are the nickname that Lurie gave to $(\infty, 1)$-categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

- objects
- 1-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
The idea of an ∞-category

∞-categories are the nickname that Lurie gave to $(\infty, 1)$-categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

- objects
- 1-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
The idea of an ∞-category

∞-categories are the nickname that Lurie gave to $(\infty, 1)$-categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

- objects
- 1-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up
The idea of an ∞-category

∞-categories are the nickname that Lurie gave to $(\infty, 1)$-categories, which are categories weakly enriched over homotopy types.

The schematic idea is that an ∞-category should have

- objects
- 1-arrows between these objects
- with composites of these 1-arrows witnessed by invertible 2-arrows
- with composition associative up to invertible 3-arrows (and unital)
- with these witnesses coherent up to invertible arrows all the way up

But this definition is tricky to make precise.
Models of ∞-categories

The notion of ∞-category is made precise by several models:

- Rezk
- Segal

- \mathcal{RelCat}
- $\mathcal{Top-Cat}$
- $\mathcal{1-Comp}$
- \mathcal{qCat}

Each of these models has enough maps and an internal hom, and in fact any of these categories can be enriched over any of the others.
Models of ∞-categories

The notion of ∞-category is made precise by several models:

- Rezk
- Segal
- RelCat
- Top-Cat
- \mathbf{Cat}
- $\mathbf{Top-Cat}$
- $\mathbf{1-Comp}$
- \mathbf{qCat}

- Topological categories and relative categories are the simplest to define but do not have enough maps between them.
The notion of ∞-category is made precise by several models:

- Topological categories and relative categories are the simplest to define but do not have enough maps between them.
- Quasi-categories (nee. weak Kan complexes), Rezk spaces (nee. complete Segal spaces), Segal categories, and (saturated 1-trivial weak) 1-complicial sets each have enough maps and also an internal hom, and in fact any of these categories can be enriched over any of the others.
The analytic vs synthetic theory of ∞-categories

Q: How might you develop the category theory of ∞-categories?

Strategies:

• work analytically to give categorical definitions and prove theorems using the combinatorics of one model (e.g., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work synthetically to give categorical definitions and prove theorems in all four models qCat, Rezk, Segal, 1-Comp at once (R-Verity: an ∞-cosmos axiomatizes the common features of the categories qCat, Rezk, Segal, 1-Comp of ∞-categories)

• work synthetically in a simplicial type theory augmenting HoTT to prove theorems in Rezk (R-Shulman: an ∞-category is a type with unique binary composites in which isomorphism is equivalent to identity)
The analytic vs synthetic theory of ∞-categories

Q: How might you develop the category theory of ∞-categories?

Strategies:

- work analytically to give categorical definitions and prove theorems using the combinatorics of one model

 (eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in $q\text{Cat}$; Kazhdan-Varshavsky, Rasekh in $\mathbb{R}\text{ezk}$; Simpson in $\mathbb{S}\text{egal}$)
The analytic vs synthetic theory of \(\infty \)-categories

Q: How might you develop the category theory of \(\infty \)-categories?

Strategies:

• work **analytically** to give categorical definitions and prove theorems using the combinatorics of one model

 (eg., Joyal, Lurie, Gepner-Haugsgeng, Cisinski in \(q\text{Cat} \);
 Kazhdan-Varshavsky, Rasekh in \(\text{Rezk} \); Simpson in \(\text{Segal} \))

• work **synthetically** to give categorical definitions and prove theorems in all four models \(q\text{Cat}, \text{Rezk}, \text{Segal}, 1\text{-Comp} \) at once

 (R-Verity: an \(\infty \)-cosmos axiomatizes the common features of the categories \(q\text{Cat}, \text{Rezk}, \text{Segal}, 1\text{-Comp} \) of \(\infty \)-categories)
The analytic vs synthetic theory of ∞-categories

Q: How might you develop the category theory of ∞-categories?

Strategies:

• work **analytically** to give categorical definitions and prove theorems using the combinatorics of one model

 (eg., Joyal, Lurie, Gepner-Haugsgen, Cisinski in $q\text{Cat}$; Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

• work **synthetically** to give categorical definitions and prove theorems in all four models $q\text{Cat}$, Rezk, Segal, 1-Comp at once

 (R-Verity: an ∞-cosmos axiomatizes the common features of the categories $q\text{Cat}$, Rezk, Segal, 1-Comp of ∞-categories)

• work **synthetically** in a simplicial type theory augmenting HoTT to prove theorems in Rezk

 (R-Shulman: an ∞-category is a type with unique binary composites in which isomorphism is equivalent to identity)
1. The synthetic theory of ∞-categories (in an ∞-cosmos)

2. The synthetic theory of ∞-categories (in homotopy type theory)
Plan

0. The analytic theory of ∞-categories

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

2. The synthetic theory of ∞-categories (in homotopy type theory)
Plan

0. The analytic theory of ∞-categories
 “∞-category theory for experts”

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

2. The synthetic theory of ∞-categories (in homotopy type theory)
Plan

0. The analytic theory of ∞-categories

 “∞-category theory for experts”

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

 “∞-category theory for graduate students”

2. The synthetic theory of ∞-categories (in homotopy type theory)
Plan

0. The analytic theory of ∞-categories

 “∞-category theory for experts”

1. The synthetic theory of ∞-categories (in an ∞-cosmos)

 “∞-category theory for graduate students”

2. The synthetic theory of ∞-categories (in homotopy type theory)

 “∞-category theory for undergraduates”
The synthetic theory of ∞-categories (in an ∞-cosmos)
∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of $q\text{Cat}$.
An \(\infty\)-cosmos is an axiomatization of the properties of \(q\text{Cat}\).

The category of quasi-categories has:

- quasi-categories \(A, B\) as objects
- functors between quasi-categories \(f: A \to B\),
∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of $q\mathbf{Cat}$.

The category of quasi-categories has:
- quasi-categories A, B as objects
- functors between quasi-categories $f: A \to B$, which define the points of a quasi-category $\text{Fun}(A, B) = B^A$
∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of \mathcal{qCat}.

The category of quasi-categories has:

- quasi-categories A, B as objects
- functors between quasi-categories $f: A \to B$, which define the points of a quasi-category $\text{Fun}(A, B) = B^A$
- a class of isofibrations $E \to B$ with familiar closure properties
An \(\infty \)-cosmos is an axiomatization of the properties of \(\text{qCat} \).

The category of quasi-categories has:

- quasi-categories \(A, B \) as objects
- functors between quasi-categories \(f : A \to B \), which define the points of a quasi-category \(\text{Fun}(A, B) = B^A \)
- a class of isofibrations \(E \to B \) with familiar closure properties
- so that (flexible weighted simplicially enriched) limits of diagrams of quasi-categories and isofibrations exist.
∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of qCat.

defn. An ∞-cosmos has:

- ∞-categories A, B as objects
- functors between ∞-categories $f: A \to B$, which define the points of a quasi-category $\text{Fun}(A, B) = B^A$
- a class of isofibrations $E \to B$ with familiar closure properties
- so that (flexible weighted simplicially enriched) limits of diagrams of ∞-categories and isofibrations exist.

Theorem. $q\text{Cat}$, Rezk, Segal, and 1-Comp define ∞-cosmoi.

Henceforth ∞-category and ∞-functor are technical terms that mean the objects and morphisms of some ∞-cosmos.
∞-cosmoi of ∞-categories

An ∞-cosmos is an axiomatization of the properties of q\text{Cat}.

defn. An ∞-cosmos has:

• ∞-categories \(A, B \) as objects
• functors between ∞-categories \(f: A \to B \), which define the points of a quasi-category \(\text{Fun}(A, B) = B^A \)
• a class of isofibrations \(E \to B \) with familiar closure properties
• so that (flexible weighted simplicially enriched) limits of diagrams of ∞-categories and isofibrations exist.

Theorem. q\text{Cat}, Rezk, Segal, and 1-Comp define ∞-cosmoi.
An \(\infty \)-cosmos is an axiomatization of the properties of \(\text{qCat} \).

Theorem. \(\text{qCat} \), Rezk, Segal, and 1-Comp define \(\infty \)-cosmoi.

Henceforth \(\infty \)-category and \(\infty \)-functor are technical terms that mean the objects and morphisms of some \(\infty \)-cosmos.
The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

- objects are the ∞-categories A, B in the ∞-cosmos
- 1-cells are the ∞-functors $f: A \to B$ in the ∞-cosmos

Prop. Equivalences in the homotopy 2-category coincide with equivalences in the ∞-cosmos.

Thus, non-evil 2-categorical definitions are "homotopically correct."
The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

- objects are the ∞-categories A, B in the ∞-cosmos
- 1-cells are the ∞-functors $f: A \to B$ in the ∞-cosmos
- 2-cells we call ∞-natural transformations $A \xrightarrow{\gamma} B$ which are defined to be homotopy classes of 1-simplices in $\text{Fun}(A, B)$
The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

- objects are the ∞-categories A, B in the ∞-cosmos
- 1-cells are the ∞-functors $f: A \to B$ in the ∞-cosmos
- 2-cells we call ∞-natural transformations $\gamma: f \Rightarrow g$ which are defined to be homotopy classes of 1-simplices in $\text{Fun}(A, B)$

Prop. Equivalences in the homotopy 2-category

coincide with equivalences in the ∞-cosmos.
The homotopy 2-category

The homotopy 2-category of an ∞-cosmos is a strict 2-category whose:

- objects are the ∞-categories A, B in the ∞-cosmos
- 1-cells are the ∞-functors $f: A \to B$ in the ∞-cosmos
- 2-cells we call ∞-natural transformations $\gamma: f \Rightarrow g$ which are defined to be homotopy classes of 1-simplices in $\text{Fun}(A, B)$

Prop. Equivalences in the homotopy 2-category

coincide with equivalences in the ∞-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”
Adjunctions between ∞-categories

defn. An adjunction between ∞-categories is an adjunction in the homotopy 2-category.
Adjunctions between ∞-categories

defn. An adjunction between ∞-categories is an adjunction in the homotopy 2-category, consisting of:

- ∞-categories A and B
- ∞-functors $u : A \to B$, $f : B \to A$
- ∞-natural transformations $\downarrow \eta$, $\downarrow \epsilon$

satisfying the triangle equalities

Write $f \dashv u$ to indicate that f is the left adjoint and u is the right adjoint.
The 2-category theory of adjunctions

Since an adjunction between ∞-categories is just an adjunction in the homotopy 2-category, all 2-categorical theorems about adjunctions become theorems about adjunctions between ∞-categories.
The 2-category theory of adjunctions

Since an adjunction between ∞-categories is just an adjunction in the homotopy 2-category, all 2-categorical theorems about adjunctions become theorems about adjunctions between ∞-categories.

Prop. Adjunctions compose:

\[
\begin{align*}
C & \dashv f' & B & \dashv f & A \\
& \sim & & & \Rightarrow & & C & \dashv \left(f f'\right) \\
& u' & & u & & & & u' u
\end{align*}
\]

Prop. Adjoints to a given functor $u : A \to B$ are unique up to canonical isomorphism: if $f \dashv u$ and $f' \dashv u$ then $f \cong f'$.

Prop. Any equivalence can be promoted to an adjoint equivalence: if $u : A \simto B$ then u is left and right adjoint to its equivalence inverse.
Composing adjunctions

Prop. Adjunctions compose:

\[
\begin{array}{ccc}
C & \overset{f'}{\to} & B \\
\downarrow_{u'} & \quad & \downarrow_u \\
C & \overset{f}{\to} & A
\end{array}
\nonumber
\]

\[
\begin{array}{ccc}
C & \overset{f f'}{\to} & A \\
\downarrow_{u' u} & \quad & \downarrow_{u' u}
\end{array}
\nonumber
\]

Proof: The composite 2-cells

\[
\begin{array}{ccc}
C & \longrightarrow & C \\
\downarrow_{f'} & \quad & \downarrow_{u'} \\
B & \longrightarrow & B \\
\downarrow_{\eta'} & \quad & \downarrow_{\eta} \\
A & \longrightarrow & A
\end{array}
\]

\[
\begin{array}{ccc}
C & \longrightarrow & C \\
\downarrow_{u' u} & \quad & \downarrow_{u' u} \\
B & \longrightarrow & B \\
\downarrow_{\epsilon' u} & \quad & \downarrow_{\epsilon} \\
A & \longrightarrow & A
\end{array}
\]

define the unit and counit of \(ff' \dashv u' u\) satisfying the triangle equalities.
defn. An ∞-category A has a terminal element iff $1 \xrightarrow{t} A$.

Prop. Right adjoints preserve terminal elements.
Proof: Compose the adjunctions $1_A \xleftarrow{u} B \xrightarrow{f} A$.

More generally:
Prop. Right adjoints preserve limits and left adjoints preserve colimits.
Proof: The usual one!
Initial and terminal elements in an \(\infty \)-category

defn. An \(\infty \)-category \(A \) has a terminal element iff \(1 \xrightarrow{t} A \).

Prop. Right adjoints preserve terminal elements.

Proof: Compose the adjunctions \(1 \xleftarrow{t} A \), \(A \xrightarrow{u} B \).
Initial and terminal elements in an ∞-category

defn. An ∞-category A has a terminal element iff $1 \xrightarrow{t} A$.

Prop. Right adjoints preserve terminal elements.

Proof: Compose the adjunctions $1 \xleftarrow{t} A \xrightarrow{f} B$.

More generally:

Prop. Right adjoints preserve limits and left adjoints preserve colimits.

Proof: The usual one!
The universal property of adjunctions

defn. Any ∞-category A has an ∞-category of arrows A^2, pulling back

$$\text{Hom}_A(f, g) \longrightarrow A^2$$

$$\downarrow$$

$$(\text{cod}, \text{dom})$$

$$C \times B \quad \longrightarrow \quad A \times A$$

$$(\text{cod}, \text{dom})$$

$$\downarrow$$

$g \times f$$

to define the *comma ∞-category*:

Prop. $u \perp f$ if and only if $\text{Hom}_A(f, A) \simeq A \times B \text{Hom}_B(B, u)$.

Prop. If $f \dashv u$ with unit η and counit ϵ then

• η is initial in $\text{Hom}_B(B, u)$ over B.

• ϵ is terminal in $\text{Hom}_A(f, A)$ over A.
The universal property of adjunctions

defn. Any ∞-category A has an ∞-category of arrows A^2, pulling back

$$\text{Hom}_A(f, g) \to A^2$$

to define the comma ∞-category:

$$\begin{array}{ccc}
C \times B & \xrightarrow{g \times f} & A \times A \\
\downarrow & & \downarrow \\
\text{(cod, dom)} & & \text{(cod, dom)}
\end{array}$$

Prop. $A \perp B$ if and only if $\text{Hom}_A(f, A) \simeq_{A \times B} \text{Hom}_B(B, u)$.
The universal property of adjunctions

defn. Any ∞-category A has an ∞-category of arrows A^2, pulling back
$$
\text{Hom}_A(f, g) \xrightarrow{(\text{cod, dom})} A^2
$$
to define the comma ∞-category:
$$
C \times B \xrightarrow{g \times f} A \times A
$$

Prop. $A \perp B$ if and only if $\text{Hom}_A(f, A) \simeq_{A \times B} \text{Hom}_B(B, u)$.

Prop. If $f \dashv u$ with unit η and counit ϵ then
- η is initial in $\text{Hom}_B(B, u)$ over B.
- ϵ is terminal in $\text{Hom}_A(f, A)$ over A.

The synthetic theory of ∞-categories (in homotopy type theory)
The Curry-Howard-Voevodsky correspondence

<table>
<thead>
<tr>
<th>type theory</th>
<th>set theory</th>
<th>logic</th>
<th>homotopy theory</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>set</td>
<td>proposition</td>
<td>space</td>
</tr>
<tr>
<td>$x : A$</td>
<td>element</td>
<td>proof</td>
<td>point</td>
</tr>
<tr>
<td>$\emptyset, 1$</td>
<td>$\emptyset, {\emptyset}$</td>
<td>\bot, \top</td>
<td>$\emptyset, *, \ast$</td>
</tr>
<tr>
<td>$A \times B$</td>
<td>set of pairs</td>
<td>A and B</td>
<td>product space</td>
</tr>
<tr>
<td>$A + B$</td>
<td>disjoint union</td>
<td>A or B</td>
<td>coproduct</td>
</tr>
<tr>
<td>$A \rightarrow B$</td>
<td>set of functions</td>
<td>A implies B</td>
<td>function space</td>
</tr>
<tr>
<td>$x : A \vdash B(x)$</td>
<td>family of sets</td>
<td>predicate</td>
<td>fibration</td>
</tr>
<tr>
<td>$x : A \vdash b : B(x)$</td>
<td>fam. of elements</td>
<td>conditional proof</td>
<td>section</td>
</tr>
<tr>
<td>$\prod_{x : A} B(x)$</td>
<td>product</td>
<td>$\forall x. B(x)$</td>
<td>space of sections</td>
</tr>
<tr>
<td>$\sum_{x : A} B(x)$</td>
<td>disjoint sum</td>
<td>$\exists x. B(x)$</td>
<td>total space</td>
</tr>
<tr>
<td>$p : x =_A y$</td>
<td>$x = y$</td>
<td>proof of equality</td>
<td>path from x to y</td>
</tr>
<tr>
<td>$\sum_{x,y : A} x =_A y$</td>
<td>diagonal</td>
<td>equality relation</td>
<td>path space for A</td>
</tr>
</tbody>
</table>
Path induction

The identity type family is freely generated by the terms $\text{refl}_x : x =_A x$.
The identity type family is freely generated by the terms $\text{refl}_x : x =_A x$.

Path induction. If $B(x, y, p)$ is a type family dependent on $x, y : A$ and $p : x =_A y$, then to prove $B(x, y, p)$ it suffices to assume y is x and p is refl_x.

Path induction.
Path induction

The identity type family is freely generated by the terms \(\text{refl}_x : x =_A x \).

Path induction. If \(B(x, y, p) \) is a type family dependent on \(x, y : A \) and \(p : x =_A y \), then to prove \(B(x, y, p) \) it suffices to assume \(y \) is \(x \) and \(p \) is \(\text{refl}_x \). I.e., there is a function

\[
\text{path-ind} : \left(\prod_{x:A} B(x, x, \text{refl}_x) \right) \rightarrow \left(\prod_{x,y:A} \prod_{p : x =_A y} B(x, y, p) \right).
\]
The intended model

\[\text{Set}^{\Delta^{\text{op}} \times \Delta^{\text{op}}} \supset \text{Reedy} \supset \text{Segal} \supset \text{Rezk} \]

- bisimplicial sets
- types
- types with composition
- types with composition & univalence
The intended model

\[\text{Set}^{\Delta \text{op} \times \Delta \text{op}} \supset \text{Reedy} \supset \text{Segal} \supset \text{Rezk} \]

- bisimplicial sets
- types
- types with composition
- types with composition & univalence

Theorem (Shulman). Homotopy type theory is modeled by the category of **Reedy fibrant** bisimplicial sets.
The intended model

\[
\begin{array}{cccc}
\text{Set}^{\Delta^{\text{op}} \times \Delta^{\text{op}}} & \supset & \text{Reedy} & \supset \\
\Downarrow & & \Downarrow & \\
\text{bisimplicial sets} & & \text{types} & \\
& & \Downarrow & \\
& & \text{types with composition} & \\
& & \Downarrow & \\
& & \text{types with composition \\
& & \& \text{univalence} & \\
\end{array}
\]

Theorem (**Shulman**). Homotopy type theory is modeled by the category of **Reedy fibrant** bisimplicial sets.

Theorem (**Rezk**). \(\infty\)-categories are modeled by **Rezk spaces** aka complete Segal spaces.
Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$\top, \bot, \land, \lor, \equiv \quad \text{and} \quad 0, 1, \leq$$

satisfying intuitionistic logic and strict interval axioms.
Shapes in the theory of the directed interval

Our types may depend on other types and also on shapes $\Phi \subset 2^n$, polytopes embedded in a directed cube, defined in a language

$$\top, \bot, \land, \lor, \equiv \quad \text{and} \quad 0, 1, \leq$$

satisfying intuitionistic logic and strict interval axioms.

$$\Delta^n := \{(t_1, \ldots, t_n) : 2^n \mid t_n \leq \cdots \leq t_1\} \quad \text{e.g.} \quad \Delta^1 := 2$$

$$\begin{align*}
\Delta^2 \ := \ &\begin{cases}
(t,t) & (1,1) \\
(0,0) & (0,1) \\
(t,0) & (1,0)
\end{cases} \\
\partial \Delta^2 \ := \ &\{(t_1, t_2) : 2^2 \mid (t_2 \leq t_1) \land ((0 = t_2) \lor (t_2 = t_1) \lor (t_1 = 1))\} \\
\Lambda^2_1 \ := \ &\{(t_1, t_2) : 2^2 \mid (t_2 \leq t_1) \land ((0 = t_2) \lor (t_1 = 1))\}
\end{align*}$$
Extension types

Formation rule for extension types

\[\Phi \subset \Psi \] shape
\[A \] type
\[a : \Phi \rightarrow A \]

\[\langle \Phi \xrightarrow{\alpha} A \rangle \] type

A term \(f : \langle \Phi \xrightarrow{\alpha} A \rangle \) defines \(f : \Psi \rightarrow A \) so that \(f(t) \equiv a(t) \) for \(t : \Phi \).

The simplicial type theory allows us to prove equivalences between extension types along composites or products of shape inclusions.
Extension types

Formation rule for extension types

\[
\Phi \subset \Psi \text{ \ shape} \quad A \text{ \ type} \quad \alpha : \Phi \rightarrow A
\]

\[
\left\langle \Phi \xrightarrow{\alpha} A \right\rangle \text{ \ type}
\]

A term \(f : \left\langle \Phi \xrightarrow{\alpha} A \right\rangle \) defines
Extension types

Formation rule for extension types

\[
\begin{array}{cc}
\Phi \subset \Psi & \text{shape} \\
\hline
A & \text{type} \\
\hline
\langle \Phi \xrightarrow{a} A \rangle & \text{type}
\end{array}
\]

A term \(f : \langle \Phi \xrightarrow{a} A \rangle \) defines

\[f : \Psi \rightarrow A \text{ so that } f(t) \equiv a(t) \text{ for } t : \Phi. \]
Extension types

Formation rule for extension types

\[
\begin{array}{c}
\Phi \subseteq \Psi \text{ shape} \\
\Phi \rightarrow A \text{ type} \\
\Phi \rightarrow A
\end{array}
\]

A term \(f : \langle \Phi \rightarrow A \rangle \) defines \(f : \Psi \rightarrow A \) so that \(f(t) \equiv a(t) \) for \(t : \Phi \).

The simplicial type theory allows us to prove equivalences between extension types along composites or products of shape inclusions.
Hom types

The hom type for A depends on two terms in A:

\[x, y : A \vdash \text{Hom}_A(x, y) \]
Hom types

The hom type for A depends on two terms in A:

$$x, y : A \vdash \text{Hom}_{A}(x, y)$$

$$\text{Hom}_{A}(x, y) := \left\langle \begin{array}{c}
\partial \Delta^1 \\
\gamma \\
\Delta^1 \\
\end{array} \xrightarrow{[x, y]} A \right\rangle \text{ type}$$
Hom types

The hom type for A depends on two terms in A:

$$x, y : A \vdash \text{Hom}_A(x, y)$$

\[\text{Hom}_A(x, y) := \left< \partial \Delta^1 \xrightarrow{[x,y]} A \right> \text{ type} \]

A term $f : \text{Hom}_A(x, y)$ defines an arrow in A from x to y.
Hom types

The hom type for A depends on two terms in A:

$$x, y : A \vdash \text{Hom}_A(x, y)$$

A term $f : \text{Hom}_A(x, y)$ defines an arrow in A from x to y.

Semantically, $\sum_{x, y : A} \text{Hom}_A(x, y)$ recovers the ∞-category of arrows A^2 in the ∞-cosmos Rezk and $\text{Hom}_A(x, y)$ recovers the comma ∞-category from x to y.
Segal types \equiv types with binary composition

A type \(A \) is Segal iff every composable pair of arrows has a unique composite.
Segal types \equiv types with binary composition

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f : \text{Hom}_A(x, y)$ and $g : \text{Hom}_A(y, z)$ the type

$$
\left\langle \begin{array}{c}
\Lambda^2_1 \\
\downarrow \\
\Delta^2
\end{array} [f, g] \rightarrow A \right\rangle
$$

is contractible.
Segal types \equiv types with binary composition

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f : \text{Hom}_A(x, y)$ and $g : \text{Hom}_A(y, z)$ the type

$$\langle \Lambda^2_1 \xrightarrow{[f,g]} A \rangle$$

is contractible.

Semantically, a Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \to A^{\Lambda^1_2}$ has contractible fibers.
Segal types \equiv types with binary composition

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f : \text{Hom}_A(x, y)$ and $g : \text{Hom}_A(y, z)$ the type

\[
\langle \Lambda^2_1 \xrightarrow{[f, g]} A \rangle
\]

is contractible.

Semantically, a Reedy fibrant bisimplicial set A is Segal if and only if $A^{\Delta^2} \to A^{\Lambda^2_1}$ has contractible fibers.

By contractibility, $\langle \Lambda^2_1 \xrightarrow{[f, g]} A \rangle$ has a unique inhabitant.
Segal types \equiv types with binary composition

A type A is Segal iff every composable pair of arrows has a unique composite, i.e., for every $f : \text{Hom}_A(x, y)$ and $g : \text{Hom}_A(y, z)$ the type

\[
\langle \Lambda^2_1 \xrightarrow{[f,g]} A \rangle
\]

is contractible.

Semantically, a Reedy fibrant bisimplicial set A is Segal if and only if $A^\Delta^2 \rightarrow A^{\Lambda^2_1}$ has contractible fibers.

By contractibility, \[
\langle \Lambda^2_1 \xrightarrow{[f,g]} A \rangle
\]
has a unique inhabitant. Write $g \circ f : \text{Hom}_A(x, z)$ for its inner face, the composite of f and g.
Identity arrows

For any $x : A$, the constant function defines a term

$$
id_x := \lambda t.x : \text{Hom}_A(x, x) := \left\langle \begin{array}{c}
\partial \Delta^1 \\
\text{[}x,x\text{]} \\
\Delta^1 \\
\text{[}x,x\text{]} \\
A
\end{array} \right\rangle,$$

which we denote by id_x and call the identity arrow.
Identity arrows

For any $x : A$, the constant function defines a term

$$\text{id}_x := \lambda t.x : \text{Hom}_A(x, x) := \left \langle \begin{array}{c}
\partial \Delta^1 \\
\downarrow \\
\Delta^1
\end{array} \xrightarrow{[x, x]} A \right \rangle,$$

which we denote by id_x and call the identity arrow.

For any $f : \text{Hom}_A(x, y)$ in a Segal type A, the term

$$\lambda(s, t).f(t) : \left \langle \begin{array}{c}
\Lambda^2_1 \\
\downarrow \\
\Delta^2
\end{array} \xrightarrow{[\text{id}_x, f]} A \right \rangle$$

witnesses the unit axiom $f = f \circ \text{id}_x$.
Associativity of composition

Let A be a Segal type with arrows

\[f : \text{Hom}_A(x, y), \quad g : \text{Hom}_A(y, z), \quad h : \text{Hom}_A(z, w). \]
Associativity of composition

Let \(A \) be a Segal type with arrows

\[f : \text{Hom}_A(x, y), \quad g : \text{Hom}_A(y, z), \quad h : \text{Hom}_A(z, w). \]

Prop. \[h \circ (g \circ f) = (h \circ g) \circ f. \]
Associativity of composition

Let A be a Segal type with arrows

$$f : \text{Hom}_A(x, y), \quad g : \text{Hom}_A(y, z), \quad h : \text{Hom}_A(z, w).$$

Prop.

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:

```
\[\begin{array}{ccc}
x & \overset{g}{\longrightarrow} & y \\
\downarrow{f} & & \downarrow{g} \\
y & \overset{g \circ f}{\longrightarrow} & z & \overset{h \circ g}{\longrightarrow} & w \\
\downarrow{g} & & \downarrow & & \downarrow{h} \\
\\
\end{array}\]
```
Associativity of composition

Let A be a Segal type with arrows

\[f : \text{Hom}_A(x, y), \quad g : \text{Hom}_A(y, z), \quad h : \text{Hom}_A(z, w). \]

Prop. \[h \circ (g \circ f) = (h \circ g) \circ f. \]

Proof: Consider the composable arrows in the Segal type $\Delta^1 \to A$:

Composing defines a term in the type $\Delta^2 \to (\Delta^1 \to A)$
Associativity of composition

Let A be a Segal type with arrows

$$f : \text{Hom}_A(x, y), \quad g : \text{Hom}_A(y, z), \quad h : \text{Hom}_A(z, w).$$

Prop.

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Proof: Consider the composable arrows in the Segal type $\Delta^1 \rightarrow A$:

Composing defines a term in the type $\Delta^2 \rightarrow (\Delta^1 \rightarrow A)$ which yields a term $\ell : \text{Hom}_A(x, w)$ so that $\ell = h \circ (g \circ f)$ and $\ell = (h \circ g) \circ f$.
An arrow $f : \text{Hom}_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g : \text{Hom}_A(y, x)$. However, the type

$$\sum_{g : \text{Hom}_A(y, x)} (g \circ f = \text{id}_x) \times (f \circ g = \text{id}_y)$$

has higher-dimensional structure and is not a proposition.
Isomorphisms

An arrow $f : \text{Hom}_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g : \text{Hom}_A(y, x)$. However, the type

$$\sum_{g : \text{Hom}_A(y, x)} (g \circ f = \text{id}_x) \times (f \circ g = \text{id}_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$\text{isiso}(f) := \left(\sum_{g : \text{Hom}_A(y, x)} g \circ f = \text{id}_x \right) \times \left(\sum_{h : \text{Hom}_A(y, x)} f \circ h = \text{id}_y \right).$$
An arrow $f : \text{Hom}_A(x, y)$ in a Segal type is an isomorphism if it has a two-sided inverse $g : \text{Hom}_A(y, x)$. However, the type

$$\sum_{g : \text{Hom}_A(y, x)} (g \circ f = \text{id}_x) \times (f \circ g = \text{id}_y)$$

has higher-dimensional structure and is not a proposition. Instead define

$$\text{isiso}(f) := \left(\sum_{g : \text{Hom}_A(y, x)} g \circ f = \text{id}_x\right) \times \left(\sum_{h : \text{Hom}_A(y, x)} f \circ h = \text{id}_y\right).$$

For $x, y : A$, the type of isomorphisms from x to y is:

$$x \cong_A y := \sum_{f : \text{Hom}_A(x, y)} \text{isiso}(f).$$
Rezk types $\equiv \infty$-categories

By path induction, to define a map

$$\text{path-to-iso} : (x =_A y) \rightarrow (x \cong_A y)$$

for all $x, y : A$ it suffices to define

$$\text{path-to-iso}(\text{refl}_x) := \text{id}_x.$$
Rezk types $\equiv \infty$-categories

By path induction, to define a map

$$\text{path-to-iso} : (x =_A y) \to (x \cong_A y)$$

for all $x, y : A$ it suffices to define

$$\text{path-to-iso}(\text{refl}_x) := \text{id}_x.$$

A Segal type A is Rezk iff every isomorphism is an identity.
Rezk types $\equiv \infty$-categories

By path induction, to define a map

\[
\text{path-to-iso}: (x =_A y) \to (x \cong_A y)
\]

for all $x, y : A$ it suffices to define

\[
\text{path-to-iso}(\text{refl}_x) := \text{id}_x.
\]

A Segal type A is Rezk iff every isomorphism is an identity, i.e., iff the map

\[
\text{path-to-iso}: \prod_{x,y:A} (x =_A y) \to (x \cong_A y)
\]

is an equivalence.
Discrete types $\equiv \infty$-groupoids

Similarly by path induction define

$$\text{path-to-arr} : (x =_A y) \to \text{Hom}_A(x, y)$$

for all $x, y : A$ by $\text{path-to-arr}(\text{refl}_x) := \text{id}_x$.
Discrete types $\equiv \infty$-groupoids

Similarly by path induction define

$$\text{path-to-arr}: (x =_A y) \to \text{Hom}_A(x, y)$$

for all $x, y : A$ by $\text{path-to-arr}(\text{refl}_x) := \text{id}_x$.

A type A is discrete iff every arrow is an identity, i.e., iff path-to-arr is an equivalence.
Discrete types \(\equiv \infty \text{-} \text{groupoids} \)

Similarly by path induction define

\[
\text{path-to-arr}: \ (x =_A y) \rightarrow \text{Hom}_A(x, y)
\]

for all \(x, y : A \) by \(\text{path-to-arr}(\text{refl}_x) := \text{id}_x \).

A type \(A \) is discrete iff every arrow is an identity, i.e., iff \(\text{path-to-arr} \) is an equivalence.

Prop. A type is discrete if and only if it is Rezk and all of its arrows are isomorphisms.

Proof:

\[
\begin{align*}
& x =_A y \quad \text{path-to-arr} \quad \text{Hom}_A(x, y) \\
\downarrow & \quad \downarrow & \quad \downarrow \\
& x \cong_A y \quad \text{path-to-iso}
\end{align*}
\]
An ∞-groupoid is a type in which arrows are equivalent to identities:

$$\text{path-to-arr}: (x =_A y) \rightarrow \text{Hom}_A(x, y)$$

is an equivalence.
defn. An ∞-groupoid is a type in which arrows are equivalent to identities:

$$\text{path-to-arr}: (x =_A y) \to \text{Hom}_A(x, y)$$

is an equivalence.

defn. An ∞-category is a type

- which has unique binary composites of arrows:

$$\left\langle \begin{array}{c} \Lambda^2_1 \to A \\ \Delta^2 \to A \end{array} \right\rangle \quad [f, g]$$

is contractible
∞-categories for undergraduates

defn. An **∞-groupoid** is a type in which arrows are equivalent to identities:

\[
\text{path-to-arr}: (x =_A y) \to \text{Hom}_A(x, y)
\]

is an equivalence.

defn. An **∞-category** is a type

- which has unique binary composites of arrows:

\[
\Lambda^2_1 \xrightarrow{[f, g]} \Delta^2 \xrightarrow{A}
\]

is contractible

- and in which isomorphisms are equivalent to identities:

\[
\text{path-to-iso}: (x =_A y) \to (x \cong_A y)
\]

is an equivalence.
A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \text{Hom}_A(x, y)$ and $u : B(x)$ there is a unique lift of f with domain u.
A type family $x : A \vdash B(x)$ over a Segal type A is **covariant** if for every $f : \text{Hom}_A(x, y)$ and $u : B(x)$ there is a unique lift of f with domain u.

The codomain of the unique lift defines a term $f_* u : B(y)$.

Prop. For $u : B(x)$, $f : \text{Hom}_A(x, y)$, and $g : \text{Hom}_A(y, z)$, $g_* (f_* u) = (g \circ f)_* u$ and $(\text{id}_x)_* u = u$.

Prop. If $x : A \vdash B(x)$ is covariant then for each $x : A$ the fiber $B(x)$ is discrete. Thus covariant type families are fibered in ∞-groupoids.

Prop. Fix $a : A$. The type family $x : A \vdash \text{Hom}_A(a, x)$ is covariant.
Covariant type families \equiv categorical fibrations

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \text{Hom}_A(x, y)$ and $u : B(x)$ there is a unique lift of f with domain u.

The codomain of the unique lift defines a term $f_*u : B(y)$.

Prop. For $u : B(x)$, $f : \text{Hom}_A(x, y)$, and $g : \text{Hom}_A(y, z)$,

$$g_*(f_*u) = (g \circ f)_*u \quad \text{and} \quad (\text{id}_x)_*u = u.$$
Covariant type families \equiv categorical fibrations

A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \text{Hom}_A(x, y)$ and $u : B(x)$ there is a unique lift of f with domain u

The codomain of the unique lift defines a term $f_* u : B(y)$.

Prop. For $u : B(x)$, $f : \text{Hom}_A(x, y)$, and $g : \text{Hom}_A(y, z)$,

$$g_*(f_* u) = (g \circ f)_* u$$

and

$$(\text{id}_x)_* u = u.$$

Prop. If $x : A \vdash B(x)$ is covariant then for each $x : A$ the fiber $B(x)$ is discrete. Thus covariant type families are fibered in ∞-groupoids.
A type family $x : A \vdash B(x)$ over a Segal type A is covariant if for every $f : \text{Hom}_A(x, y)$ and $u : B(x)$ there is a unique lift of f with domain u.

The codomain of the unique lift defines a term $f_*u : B(y)$.

Prop. For $u : B(x)$, $f : \text{Hom}_A(x, y)$, and $g : \text{Hom}_A(y, z)$,

$$g_*(f_*u) = (g \circ f)_*u \quad \text{and} \quad (\text{id}_x)_*u = u.$$

Prop. If $x : A \vdash B(x)$ is covariant then for each $x : A$ the fiber $B(x)$ is discrete. Thus covariant type families are fibered in ∞-groupoids.

Prop. Fix $a : A$. The type family $x : A \vdash \text{Hom}_A(a, x)$ is covariant.
The Yoneda lemma

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix $a : A$.

Yoneda lemma. The maps $\text{ev-id} := \lambda \phi. \phi(a, \text{id}_a) : \prod_{x : A} \text{Hom}_A(a, x) \to B(x)$ and $\text{yon} := \lambda u. \lambda x. \lambda f. f^* u : B(a) \to \prod_{x : A} \text{Hom}_A(a, x) \to B(x)$ are inverse equivalences.

Corollary. A natural isomorphism $\phi : \prod_{x : A} \text{Hom}_A(a, x) \cong \text{Hom}_A(b, x)$ induces an identity $\text{ev-id}(\phi) : b = A \cdot a$ if the type A is Rezk.
The Yoneda lemma

Let $x : A \vdash B(x)$ be a covariant family over a Segal type and fix $a : A$.

Yoneda lemma. The maps

$$\text{ev-id} := \lambda \phi. \phi(a, \text{id}_a) : \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right) \to B(a)$$

and

$$\text{yon} := \lambda u. \lambda x. \lambda f. f_* u : B(a) \to \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right)$$

are inverse equivalences.
The Yoneda lemma

Let \(x : A \vdash B(x) \) be a covariant family over a Segal type and fix \(a : A \).

Yoneda lemma. The maps

\[
\text{ev-id} := \lambda \phi.\phi(a, \text{id}_a) : \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right) \to B(a)
\]

and

\[
\text{yon} := \lambda u.\lambda x.\lambda f.f_*u : B(a) \to \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right)
\]

are inverse equivalences.

Corollary. A natural isomorphism \(\phi : \prod_{x:A} \text{Hom}_A(a, x) \cong \text{Hom}_A(b, x) \) induces an identity \(\text{ev-id}(\phi) : b =_A a \) if the type \(A \) is Rezk.
Yoneda lemma. If A is a Segal type and $B(x)$ is a covariant family dependent on $x : A$, then evaluation at (a, id_a) defines an equivalence

$$\text{ev-id} : \left(\prod_{x : A} \text{Hom}_A(a, x) \to B(x) \right) \to B(a)$$
The dependent Yoneda lemma

Yoneda lemma. If \(A \) is a Segal type and \(B(x) \) is a covariant family dependent on \(x : A \), then evaluation at \((a, \text{id}_a)\) defines an equivalence

\[
\text{ev-id} : \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right) \to B(a)
\]

The Yoneda lemma is a “directed” version of the “transport” operation for identity types, suggesting a dependently-typed generalization analogous to the full induction principle for identity types.
The dependent Yoneda lemma

Yoneda lemma. If A is a Segal type and $B(x)$ is a covariant family dependent on $x : A$, then evaluation at (a, id_a) defines an equivalence

$$\text{ev-id} : \left(\prod_{x:A} \text{Hom}_A(a, x) \to B(x) \right) \to B(a)$$

The Yoneda lemma is a “directed” version of the “transport” operation for identity types, suggesting a dependently-typed generalization analogous to the full induction principle for identity types.

Dependent Yoneda lemma. If A is a Segal type and $B(x, y, f)$ is a covariant family dependent on $x, y : A$ and $f : \text{Hom}_A(x, y)$, then evaluation at (x, x, id_x) defines an equivalence

$$\text{ev-id} : \left(\prod_{x,y:A} \prod_{f:\text{Hom}_A(x,y)} B(x, y, f) \right) \to \prod_{x:A} B(x, x, \text{id}_x)$$
Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.
Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.

Path induction. If $B(x, y, p)$ is a type family dependent on $x, y : A$ and $p : x =_A y$, then to prove $B(x, y, p)$ it suffices to assume y is x and p is refl_x. I.e., there is a function

$$\text{path-ind} : \left(\prod_{x:A} B(x, x, \text{refl}_x) \right) \rightarrow \left(\prod_{x,y:A} \prod_{p:x=_{A}y} B(x, y, p) \right).$$
Dependent Yoneda is directed path induction

Slogan: the dependent Yoneda lemma is directed path induction.

Path induction. If $B(x, y, p)$ is a type family dependent on $x, y : A$ and $p : x =_A y$, then to prove $B(x, y, p)$ it suffices to assume y is x and p is refl_x. I.e., there is a function

$$\text{path-ind} : \left(\prod_{x : A} B(x, x, \text{refl}_x) \right) \rightarrow \left(\prod_{x, y : A} \prod_{p : x =_A y} B(x, y, p) \right).$$

Arrow induction. If $B(x, y, f)$ is a covariant family dependent on $x, y : A$ and $f : \text{Hom}_A(x, y)$ and A is Segal, then to prove $B(x, y, f)$ it suffices to assume y is x and f is id_x. I.e., there is a function

$$\text{id-ind} : \left(\prod_{x : A} B(x, x, \text{id}_x) \right) \rightarrow \left(\prod_{x, y : A} \prod_{f : \text{Hom}_A(x, y)} B(x, y, f) \right).$$
More theorems about ∞-categories can be proven using analytic methods in a particular model, but there are other advantages to the synthetic approach:

• efficiency: a large part of the theory can be developed simultaneously in many models by working synthetically with ∞-categories as objects in an ∞-cosmos.
• simplification: the axioms of an ∞-cosmos are chosen to simplify proofs by working strictly up to isomorphism insofar as possible.
• model-independence: ∞-cosmology may be used to demonstrate that both analytically- and synthetically-proven results about ∞-categories transfer across suitable “change-of-model” functors.
• compatible with new foundations: synthetic constructions can easily be adapted to simplicial HoTT, which yields further streamlining.
More theorems about ∞-categories can be proven using analytic methods in a particular model, but there are other advantages to the synthetic approach:

- **efficiency**: a large part of the theory can be developed simultaneously in many models by working synthetically with ∞-categories as objects in an ∞-cosmos.
Closing thoughts

More theorems about ∞-categories can be proven using analytic methods in a particular model, but there are other advantages to the synthetic approach:

- **efficiency**: a large part of the theory can be developed simultaneously in many models by working synthetically with ∞-categories as objects in an ∞-cosmos.

- **simplification**: the axioms of an ∞-cosmos are chosen to simplify proofs by working strictly up to isomorphism insofar as possible.

- **model-independence**: ∞-cosmology may be used to demonstrate that both analytically- and synthetically-proven results about ∞-categories transfer across suitable "change-of-model" functors.

- **compatible with new foundations**: synthetic constructions can easily be adapted to simplicial HoTT, which yields further streamlining.
Closing thoughts

More theorems about ∞-categories can be proven using analytic methods in a particular model, but there are other advantages to the synthetic approach:

• **efficiency**: a large part of the theory can be developed simultaneously in many models by working synthetically with ∞-categories as objects in an ∞-cosmos.

• **simplification**: the axioms of an ∞-cosmos are chosen to simplify proofs by working strictly up to isomorphism insofar as possible.

• **model-independence**: ∞-cosmology may be used to demonstrate that both analytically- and synthetically-proven results about ∞-categories transfer across suitable “change-of-model” functors.

• **compatible with new foundations**: synthetic constructions can easily be adapted to simplicial HoTT, which yields further streamlining.
More theorems about ∞-categories can be proven using analytic methods in a particular model, but there are other advantages to the synthetic approach:

- **efficiency**: a large part of the theory can be developed simultaneously in many models by working synthetically with ∞-categories as objects in an ∞-cosmos.
- **simplification**: the axioms of an ∞-cosmos are chosen to simplify proofs by working strictly up to isomorphism insofar as possible.
- **model-independence**: ∞-cosmology may be used to demonstrate that both analytically- and synthetically-proven results about ∞-categories transfer across suitable “change-of-model” functors.
- **compatible with new foundations**: synthetic constructions can easily be adapted to simplicial HoTT, which yields further streamlining.
References

For more on the synthetic theories of ∞-categories, see:

Emily Riehl and Dominic Verity

- draft book in progress:

 Elements of ∞-Category Theory
 www.math.jhu.edu/~eriehl/elements.pdf

- mini-course lecture notes:

 ∞-Category Theory from Scratch
 arXiv:1608.05314

Emily Riehl and Michael Shulman

- A type theory for synthetic ∞-categories, Higher Structures

Thank you!