Arnold diffusion for ‘complete’ families of perturbations with two or three independent harmonics

Emerging interactions of geometric and variational methods

Institute for Advanced Study, Princeton, April 9-13, 2018

Amadeu Delshams Rodrigo G. Schaefer

Universitat Politècnica de Catalunya

April 9th, 2018
Consider a pendulum and a rotor plus a time periodic perturbation depending on two harmonics in the variables \((\varphi, s)\):

\[
H_\varepsilon(p, q, I, \varphi, s) = \pm \left(\frac{p^2}{2} + \cos q - 1 \right) + \frac{l^2}{2} + \varepsilon h(q, \varphi, s) \quad (1)
\]

\[
h(q, \varphi, s) = f(q)g(\varphi, s), \quad f(q) = \cos q,
\]

\[
g(\varphi, s) = a_1 \cos(k_1 \varphi + l_1 s) + a_2 \cos(k_2 \varphi + l_2 s), \quad (2)
\]

for some \(k_1, k_2, l_1, l_2 \in \mathbb{Z}\).

Theorem

Assume that \(a_1 a_2 \neq 0\) and \(\begin{vmatrix} k_1 & k_2 \\ l_1 & l_2 \end{vmatrix} \neq 0\) in (1)-(2). Then, for any \(I^* > 0\), there exists \(\varepsilon^* = \varepsilon^*(I^*, a_1, a_2) > 0\) such that for any \(\varepsilon, 0 < \varepsilon < \varepsilon^*\), there exists a trajectory \((p(t), q(t), I(t), \varphi(t))\) such that for some \(T > 0\)

\[
I(0) \leq -I^* < I^* \leq I(T).
\]

Remark: \(I(t) \equiv \text{constant for } \varepsilon = 0\).
The a priori unstable system

Goals

- To review the construction of scattering maps initiated in [D-Llave-Seara00], designed to detect global instability.
- To compute explicitly several scattering maps to prove global instability for the action \(I \) for any \(\varepsilon > 0 \) small enough.
- To estimate the time of diffusion in some cases (at least for \(k_1 = l_2 = 1 \) and \(l_1 = k_2 = 0 \)).
- To play with the parameter \(\mu = a_1/a_2 \) to prove global instability for any value of \(\mu \neq 0, \infty \).
- To describe bifurcations of the scattering maps.
- To get a glimpse of the \(3 + \frac{1}{2} \) degrees of freedom case.
It is easy to check that if

$$\Delta := k_1 l_2 - k_2 l_1 = 0 \quad \text{or} \quad a_1 = 0 \quad \text{or} \quad a_2 = 0$$

there is no global instability for the variable l.

If $\Delta a_1 a_2 \neq 0$, after some rational linear changes in the angles, we only need to study two cases:

- The first (and easier) case [D-Schaefer17]

$$g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$$

- The second case [D-Schaefer17a]

$$g(\varphi, \sigma) = a_1 \cos \varphi + a_2 \cos \sigma,$$

where $\sigma = \varphi - s$.
We deal with an a priori unstable Hamiltonian [Chierchia-Gallavotti94].

In the unperturbed case $\varepsilon = 0$, the Hamiltonian H_0 is integrable formed by the standard pendulum plus a rotor

$$H_0(p, q, l, \varphi, s) = \pm \left(\frac{p^2}{2} + \cos q - 1 \right) + \frac{l^2}{2}.$$

I is constant: $\triangle l := l(T) - l(0) \equiv 0$.

For any $0 < \varepsilon \ll 1$, there is a finite drift in the action of the rotor l: $\triangle l = \mathcal{O}(1)$, so we have global instability.

In short, this is is also frequently called Arnold diffusion.
Basically, we ensure the Arnold diffusion performing the following scheme:

- To construct iterates under several **Scattering maps** and the **Inner map**, giving rise to diffusing **pseudo-orbits**.
- To use previous results about Shadowing [Fontich-Martín00], [Gidea-Llave-Seara14]) for ensuring the existence of real orbits close to the pseudo-orbits.
We have two important dynamics associated to the system: the inner and the outer dynamics on a large invariant object $\tilde{\Lambda}$:

$$\tilde{\Lambda} = \{(0, 0, l, \varphi, s); l \in [-l^*, l^*], (\varphi, s) \in \mathbb{T}^2\},$$

which is a 3D *Normally Hyperbolic Invariant Manifold* (NHIM) with associated 4D stable $W^s_\varepsilon(\tilde{\Lambda})$ and unstable $W^u_\varepsilon(\tilde{\Lambda})$ invariant manifolds.

- The **inner dynamics** is the dynamics restricted to $\tilde{\Lambda}$. (Inner map)
- The **outer dynamics** is the dynamics along the invariant manifolds to $\tilde{\Lambda}$. (Scattering map)

Remark: Due to the form of the perturbation, $\tilde{\Lambda} = \tilde{\Lambda}_\varepsilon$.
For the first case $g(\varphi, s) = a_1 \cos \varphi + a_2 \cos s$, the inner dynamics is described by the Hamiltonian systems with the Hamiltonian

$$K(I, \varphi, s) = \frac{I^2}{2} + \varepsilon (a_1 \cos \varphi + a_2 \cos s).$$

In this case the inner dynamics is integrable (a pendulum).
For $g(\varphi, \sigma)$, the inner dynamics is by the Hamiltonian

$$K(I, \varphi, \sigma) = \frac{I^2}{2} + \varepsilon (a_1 \cos \varphi + a_2 \cos \sigma),$$

where $\sigma = \varphi - s$. The system associated to this Hamiltonian is not integrable and two resonances arise in $I = 0$ and $I = 1$.
Let \(\tilde{\Lambda} \) be a NHIM with invariant manifolds intersecting transversally along a homoclinic manifold \(\Gamma \). A scattering map is a map \(S \) defined by
\[
S(\tilde{x}_-) = \tilde{x}_+ \text{ if there exists } \tilde{z} \in \Gamma \text{ satisfying}
\]
\[
|\phi^\varepsilon_t(\tilde{z}) - \phi^\varepsilon_t(\tilde{x}_\mp)| \longrightarrow 0 \text{ as } t \longrightarrow \pm\infty
\]
that is, \(W^u_\varepsilon(\tilde{x}_-) \) intersects transversally \(W^s_\varepsilon(\tilde{x}_+) \) in \(\tilde{z} \).
Outer dynamics

Scattering map

\(S \) is symplectic and exact [D-Llave-Seara08] and takes the form:

\[
S_\varepsilon(I, \varphi, s) = \left(I + \varepsilon \frac{\partial L^*}{\partial \theta}(I, \theta) + O(\varepsilon^2), \theta - \varepsilon \frac{\partial L^*}{\partial I}(I, \theta) + O(\varepsilon^2), s \right),
\]

where \(\theta = \varphi - Is \) and \(L^*(I, \theta) \) is the Reduced Poincaré function, or more simply in the variables \((I, \theta)\):

\[
S_\varepsilon(I, \theta) = \left(I + \varepsilon \frac{\partial L^*}{\partial \theta}(I, \theta) + O(\varepsilon^2), \theta - \varepsilon \frac{\partial L^*}{\partial I}(I, \theta) + O(\varepsilon^2) \right),
\]

- The variable \(s \) remains fixed under \(S_\varepsilon \): it plays the role of a parameter
- Up to first order in \(\varepsilon \), \(S_\varepsilon \) is the \(-\varepsilon \)-time flow of the Hamiltonian \(L^*(I, \theta) \)
- The scattering map jumps \(O(\varepsilon) \) distances along the level curves of \(L^*(I, \theta) \)
To get a scattering map we search for homoclinic orbits to $\tilde{\Lambda}_\varepsilon$

Proposition

Given $(l, \varphi, s) \in [-l^*, l^*] \times \mathbb{T}^2$, assume that the real function

$$\tau \in \mathbb{R} \mapsto \mathcal{L}(l, \varphi - l \tau, s - \tau) \in \mathbb{R}$$

has a non degenerate critical point $\tau^* = \tau(l, \varphi, s)$, where

$$\mathcal{L}(l, \varphi, s) = \int_{-\infty}^{+\infty} (\cos q_0(\sigma) - \cos 0) g(\varphi + l\sigma, s + \sigma; 0) d\sigma.$$

Then, for $0 < |\varepsilon|$ small enough, there exists a transversal homoclinic point \tilde{z} to $\tilde{\Lambda}_\varepsilon$, which is ε-close to the point $\tilde{z}^*(l, \varphi, s) = (p_0(\tau^*), q_0(\tau^*), l, \varphi, s) \in \mathcal{W}^0(\tilde{\Lambda})$:

$$\tilde{z} = \tilde{z}(l, \varphi, s) = (p_0(\tau^*) + O(\varepsilon), q_0(\tau^*) + O(\varepsilon), l, \varphi, s) \in \mathcal{W}^u(\tilde{\Lambda}_\varepsilon) \cap \mathcal{W}^s(\tilde{\Lambda}_\varepsilon).$$
In our model \(q_0(t) = 4 \arctan e^t, p_0(t) = 2 / \cosh t \) is the separatrix for positive \(p \) of the standard pendulum \(P(q, p) = p^2 / 2 + \cos q - 1 \).

- For \(g(\phi, s) = a_1 \cos \phi + a_2 \cos s \), the Melnikov potential becomes
 \[
 \mathcal{L}(I, \phi, s) = A_1(I) \cos \phi + A_2 \cos s,
 \]
 where \(A_1(I) = \frac{2 \pi I a_1}{\sinh \left(\frac{I \pi}{2} \right)} \) and \(A_2 = \frac{2 \pi a_2}{\sinh \left(\frac{\pi}{2} \right)} \).

- For \(g(\phi, \sigma) = a_1 \cos \phi + a_2 \cos \sigma \ (\sigma = \phi - s) \), the Melnikov potential becomes
 \[
 \mathcal{L}(I, \phi, \sigma) = A_1(I) \cos \phi + A_2(I) \cos \sigma,
 \]
 where \(A_1(I) \) is as before but now \(A_2(I) = \frac{2 \left(I - 1 \right) \pi a_2}{\sinh \left(\frac{\left(I - 1 \right) \pi}{2} \right)} \).
The Melnikov potentials are similar in both cases.

Figure: The Melnikov Potential, $\mu = a_1/a_2 = 0.6$, $l = 1$, $g(\varphi, s)$.
Finally, the function $\mathcal{L}^*(l, \theta)$ can be defined:

Definition

The Reduced Poincaré function is

$$\mathcal{L}^*(l, \theta) = \mathcal{L}(l, \varphi - l \tau^*(l, \varphi, s), s - \tau^*(l, \varphi, s)),$$

where $\theta = \varphi - l s$.

Therefore the definition of $\mathcal{L}^*(l, \theta)$ depends on the function $\tau^*(l, \varphi, s)$.
From the Proposition given above, we look for τ^* such that
\[
\frac{\partial \mathcal{L}}{\partial \tau}(l, \varphi - l \tau^*, s - \tau^*) = 0.
\]

Different view-points for $\tau^* = \tau^*(l, \varphi, s)$

- Look for critical points of \mathcal{L} on the straight line, called NHIM line $R(l, \varphi, s) = \{(\varphi - l \tau, s - \tau), \tau \in \mathbb{R}\}$.
- Look for intersections between $R(l, \varphi, s) = \{(\varphi - l \tau, s - \tau), \tau \in \mathbb{R}\}$ and a crest which is a curve of equation
\[
\frac{\partial \mathcal{L}}{\partial \tau}(l, \varphi - l \tau, s - \tau)|_{\tau=0} = 0.
\]

Note that the crests are characterized by $\tau^*(l, \varphi, s) = 0$.
Definition - Crests [D-Huguet11]

For each \(I \), we call crest \(C(I) \) the set of curves in the variables \((\varphi, s)\) of equation

\[
I \frac{\partial L}{\partial \varphi}(I, \varphi, s) + \frac{\partial L}{\partial s}(I, \varphi, s) = 0.
\]

which in our case can be rewritten as

\[
g(\varphi, s): \mu \alpha(I) \sin \varphi + \sin s = 0, \quad \text{with } \alpha(I) = \frac{I^2 \sinh(\frac{\pi I}{2})}{\sinh(\frac{\pi}{2})}, \quad \mu = \frac{a_1}{a_2}.
\]

\[
g(\varphi, \sigma = \varphi - s): \mu \alpha(I) \sin \varphi + \sin \sigma = 0, \quad \text{with } \alpha(I) = \frac{I^2 \sinh(\frac{(I-1)\pi I}{2})}{(I-1)^2 \sinh(\frac{\pi I}{2})}, \quad \mu = \frac{a_1}{a_2}.
\]

- For any \(I \), the critical points of the Melnikov potential \(L(I, \cdot, \cdot) \) ((0, 0), (0, \(\pi \)), \((\pi, 0) \) and \((\pi, \pi) \): one maximum, one minimum point and two saddle points) always belong to the crest \(C(I) \).
- \(L^*(I, \theta) \) is nothing else but \(L \) evaluated on the crest \(C(I) \).
- \(\theta = \varphi - Is \) is constant on the NHIM line \(R(I, \varphi, s) \)
Figure: Level curves of \mathcal{L} for $\mu = a_1/a_2 = 0.5$, $l = 1.2$ and $g(\varphi, s)$.
Understanding the behavior of the crests

\[\downarrow \]

Understanding the behavior of the Reduced Poincaré function

\[\downarrow \]

Understanding the Scattering map
For $|\mu_\alpha(I)| < 1$, there are two crests $C_{M,m}(I)$ parameterized by:

\[
\begin{align*}
 s &= \xi_M(I, \varphi) = -\arcsin(\mu_\alpha(I) \sin \varphi) \mod 2\pi \\
 \xi_m(I, \varphi) &= \arcsin(\mu_\alpha(I) \sin \varphi) + \pi \mod 2\pi
\end{align*}
\]

They are "horizontal" crests.
First case: \(g(\varphi, s) \) \(0 < |\mu| < 0.625 \)

- For each \(I \), the NHIM line \(R(I, \varphi, s) \) and the crest \(C_{M,m}(I) \) has only one intersection point.

- The scattering map \(S_M \) associated to the intersections between \(C_{M}(I) \) and \(R(I, \varphi, s) \) is well defined for any \(\varphi \in \mathbb{T} \). Analogously for \(S_m \), changing \(M \) to \(m \). In the variables \((I, \theta = \varphi - Is) \), both scattering maps \(S_M, S_m \) are globally well defined.

(a) Level curves of \(\mathcal{L}^*_M(I, \theta) \)
(b) Level curves of \(\mathcal{L}^*_m(I, \theta) \)
First case: \(g(\varphi, s) \)

- There are **tangencies** between \(C_{M,m}(I, \varphi) \) and \(R(I, \varphi, s) \). For some value of \((I, \varphi, s)\), there are 3 points in \(R(I, \varphi, s) \cap C_{M,m}(I) \).

- This implies that there are 3 scattering maps associated to each crest with different domains. (**Multiple Scattering maps**)
First case: $g(\varphi, s)$

$0.625 < |\mu|$

(c) The three types of level curves.
(d) Zoom where the scattering maps are different

Figure: Level curves of $\mathcal{L}_M^*(l, \theta)$, $\mathcal{L}_M^{* (1)}(l, \theta)$ and $\mathcal{L}_M^{* (2)}(l, \theta)$
For some values of I, $|\mu \alpha(I)| > 1$, the two crests $C_{M,m}$ are parameterized by:

\[
\begin{align*}
\varphi &= \eta_M(I, s) = -\arcsin(\mu \alpha(I) \sin s) \pmod{2\pi} \\
\eta_m(I, s) &= \arcsin(\mu \alpha(I) \sin s) + \pi \pmod{2\pi}
\end{align*}
\] (5)

They are “vertical” crests.
First case: \(g(\varphi, s) \), \(|\mu| > 0.97\)

For the values of \(l \) for which horizontal crests become vertical, it is not always possible to prolong in a continuous way the scattering maps, so the domain of the scattering map has to be restricted.

Figure: The level curves of \(\mathcal{L}_M^*(l, \theta), \mu = 1.5 \).

In green, the region where the scattering map \(S_M \) is not defined.
Definition: Highways

Highways are the level curves of \mathcal{L}^* such that

$$\mathcal{L}^*(I, \theta) = A_2 = \frac{2\pi a_2}{\sinh(\pi/2)}.$$

- The highways are “vertical” in the variables (φ, s)
- We always have a pair of highways. One goes up, the other goes down (this depends on the sign of $\mu = a_1/a_2$)
- The highways give rise to fast diffusing pseudo-orbits
First case: \(g(\varphi, s) \)

Figure: The scattering map jumps \(O(\varepsilon) \) distances along the level curves of \(L^*(l, \theta) \)
First case: $g(\varphi, s)$

An example of pseudo-orbit

Figure: In red: Inner map, blue: Scattering map, black: Highways
An estimate of the total time of diffusion between $-I^*$ and I^*, along the highway, is

$$T_d = \frac{T_s}{\varepsilon} \left[2 \log \left(\frac{C}{\varepsilon} \right) + O(\varepsilon^b) \right], \text{ for } \varepsilon \to 0, \text{ where } 0 < b < 1,$$

with

$$T_s = T_s(I^*, a_1, a_2) = \int_0^{I^*} \frac{-\sinh(\pi I/2)}{\pi a_1 I \sin \psi_h(I)} dI,$$

where $\psi_h = \theta - I \tau^*(I, \theta)$ is the parameterization of the highway $\mathcal{L}^*(I, \psi_h) = A_2$, and

$$C = C(I^*, a_1, a_2) = 16 |a_1| \left(1 + \frac{1.465}{\sqrt{1 - \mu^2 A^2}} \right)$$

where $A = \max_{I \in [0, I^*]} \alpha(I)$, with $\alpha(I) = \frac{\sinh(\pi I/2)}{\sinh(\pi I/2)}$ and $\mu = a_1/a_2$.

Note: This estimate agrees with the upper bounds given in [Bessi-Chierchia-Valdinoci01] and quantifies the general optimal diffusion estimate $O \left(\frac{1}{\varepsilon} \log \frac{1}{\varepsilon} \right)$ of [Berti-Biasco-Bolle03] and [Treschev04].
Second case: $g(\varphi, \sigma), \sigma = \varphi - s$

Main differences

In the second case:

- For $|\mu \alpha(I)| < 1$, there are two crests $C_{M,m}(I)$ parameterized by $\sigma = \xi_M(I, \varphi)$ and $\xi_m(I, \varphi)$. For $|\mu \alpha(I)| > 1$, $C_{M,m}(I)$ parameterized by $\varphi = \eta_M(I, \sigma)$ and $\eta_m(I, \sigma)$. The crests lie on the plane (φ, σ).

- There are no global Highways.

- For any value of $\mu = a_1/a_2$ is possible to find I_h and I_v such that for $I = I_h$ the crests are horizontal and for $I = I_v$ the crests are vertical.

- For any value of μ there exists I such that the crests and some NHIM line are tangent. There are always multiple scattering maps.
Second case: \(g(\varphi, \sigma), \sigma = \varphi - s \)

From the definitions of \(R(I, \varphi, s) \) and \(C(I) \), we have

\[
R(I, \varphi, s) \cap C(I) = \{(I, \varphi - l\tau^*(I, \varphi, s), s - \tau^*(I, \varphi, s))\}.
\]

Introducing

\[
\tau^*(I, \theta) := \tau^*(I, \varphi - Is, 0), \quad \text{with} \quad \theta = \varphi - Is = (1 - l)\varphi + l\sigma,
\]

one can see that on the plane \((\varphi, \sigma = \varphi - s)\), the NHIM lines take the form

\[
R_I(\varphi, \sigma) = \{(\varphi - l\tau, \sigma - (1 - 1)\tau), \tau \in \mathbb{R}\}
\]

and that

\[
R_I(\varphi, \sigma) \cap C(I) = \{(\theta - l\tau^*(I, \theta), \theta - (1 - 1)\tau^*(I, \theta))\}.
\]

Therefore, the function \(\tau^*(I, \theta) \) is the time spent to go from a point \((\theta, \theta)\) in the diagonal \(\sigma = \varphi \) up to \(C(I) \) with a velocity vector \(\mathbf{v} = -(l, l - 1) \).
Second case: \(g(\varphi, \sigma), \sigma = \varphi - s \)

The choice of the concrete curve of the crest and therefore of \(\tau^*(I, \theta) \) is very important and useful.

Figure: Going down along NHIM lines

- **Green** zones: \(I \) increases under the scattering map.
- **Red** zones: \(I \) decreases under the scattering map.

Figure: The “lower” crest
Second case: \(g(\varphi, \sigma), \sigma = \varphi - s \)

Kinds of scattering maps

Figure: Going up along NHIM lines

Figure: The “upper” crest
Second case: $g(\varphi, \sigma), \sigma = \varphi - s$

Kinds of scattering maps

Figure: Minimal time

Figure: Minimal $|\tau^*|$ between “lower” and “upper” crest
Second case: \(g(\varphi, \sigma), \sigma = \varphi - s \)

Piecewise smooth \(S(I, \theta) \)

In this picture we show a combination of 3 scattering maps.

Figure: First intersection

Figure: Minimal \(|\tau^*| \) between \(C_M(I) \) and \(C_m(I) \)
Consider a pendulum and two rotors plus a time periodic perturbation depending on three harmonics in the angles \((\varphi_1, \varphi_2, \varphi_3 = s)\):

\[
H_\varepsilon(p, q, I_1, I_2, \varphi_1, \varphi_2, s) = \pm \left(\frac{p^2}{2} + \cos q - 1 \right) + h(I_1, I_2) + \varepsilon f(q) g(\varphi_1, \varphi_2, s),
\]

\[
h(I_1, I_2) = \Omega_1 I_1^2/2 + \Omega_2 I_2^2/2, \quad f(q) = \cos q
\]

\[
g(\varphi_1, \varphi_2, s) = a_1 \cos \varphi_1 + a_2 \cos \varphi_2 + a_3 \cos s.
\]

Theorem (Arnold diffusion for a two-parameter family)

Assume \(a_1 a_2 a_3 \neq 0\) and \(|a_1/a_3| + |a_2/a_3| < 0.625\) in Hamiltonian (6)+(7). Then, for any two actions \(I_\pm\) and any \(\delta\) there exists \(\varepsilon_0 > 0\) such that for every \(0 < |\varepsilon| < \varepsilon_0\) there exists an orbit \(\tilde{x}(t)\) and \(T > 0\) such that

\[
|I(\tilde{x}(0)) - I_-| \leq \delta \quad \text{and} \quad |I(\tilde{x}(T)) - I_+| \leq \delta
\]
For $|a_1/a_3| + |a_2/a_3| < 0.625$ there are two horizontal crests $C_{M,m}(I)$, and both scattering maps S_M, S_m are globally well defined.

Figure: Horizontal crests: $a_1/a_3 = a_2/a_3 = 0.48, \Omega_1 l_1 = \Omega_2 l_2 = 1.219$.

Diffusing orbits are found by shadowing orbits of both scattering maps scattering maps and the inner dynamics.

Remark

*Actually, we can prove that given any two actions I_{\pm} and any path $\gamma(s)$ joining them in the actions space, there exists an orbit $\tilde{x}(t)$ such that $I(\tilde{x}(t))$ is δ-close to $\gamma(\Psi(t))$ for some parameterization Ψ.***
Theorem (Diffusion paths using only Scattering maps)

Assume $a_1 a_2 a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (6)+(7).

Given any two $(I_+, \theta_+) \in \tilde{\mathcal{I}}$, where

$$\tilde{\mathcal{I}} = \mathbb{R}^2 \times \mathbb{T}^2 \setminus \{(0, 0, 0, 0), (0, 0, \pi, 0), (0, 0, 0, \pi), (0, 0, \pi, \pi)\},$$

and any δ there exists $\varepsilon_0 > 0$ such that for every $0 < |\varepsilon| < \varepsilon_0$ there is an orbit $(I^i, \theta^i)_{0 \leq i < N}$ of the polyscattering map (S_0, S_1, S_2):

$$(I^{i+1}, \theta^{i+1}) = S_\ell(I^i, \theta^i), \text{ where } \ell \in \{0, 1, 2\},$$

such that

$$|(I^0, \theta^0) - (I_-, \theta_-)| < \delta \text{ and } |(I^N, \theta^N) - (I_+, \theta_+)| < \delta.$$
Theorem (Existence of Highways)

Assume $a_1 a_2 a_3 \neq 0$ and $|a_1/a_3| + |a_2/a_3| < 0.625$ in Hamiltonian (6)+(7). Given any $0 < c_j < C_j$, $j = 1, 2$, there is an orbit $(l^i, \theta^i)_{0 \leq i < N}$ of the scattering map S_0 such that

$$|l_j^0| < c_j \quad \text{and} \quad |l_j^N| > C_j, \quad j = 1, 2.$$