A_∞ structures as a language for open Gromov-Witten theory

Short talks by postdoctoral members, IAS, fall 2017
Sara Tukachinsky
Gromov-Witten theory \((g = 0)\)

Setting: \((X, \omega, J)\) symplectic manifold with almost complex structure

\[X = X^{2n}, \ \omega \text{ 2-form such that } \omega^n \text{ is a volume form} \]
\[J \in \text{End}(TX), J^2 = -\text{Id}, \text{ “}\omega\text{-tame”} \]

Example: \((\mathbb{C}P^n, \omega_{FS}, J_0)\)

Problem: Count \(J\)-holomorphic maps from the sphere

\[u: S^2 \to X \]

that satisfy various constraints
The moduli space of sphere maps

\[\overline{\mathcal{M}}_l(\beta) = \left\{ (u: S^2 \xrightarrow{\text{J-hol.}} X, w_1, \ldots, w_l) . \ [u] = \beta \in H_2(X; \mathbb{Z}) \mid w_j \in S^2, w_i \neq w_j \right\} / \sim \]

Compactification:
Rephrasing the problem

Count elements of $\overline{\mathcal{M}}_i(\beta)$ such that the marked points are mapped to given constraints.

Can be expressed as an integral:

$$GW_\beta(\gamma_1, \ldots, \gamma_l) = \int_{\overline{\mathcal{M}}_i(\beta)} ev_1^* \gamma_1 \wedge \cdots \wedge ev_l^* \gamma_l.$$
Some facts

• GW invariants are defined by the above integral if the space $\overline{M}_i(\beta)$ is “nice”

• GW are generally hard to compute

• In some cases, can compute GW invariants by the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equation
Kontsevich (1994)

<table>
<thead>
<tr>
<th>degree = d</th>
<th>No. of degree-d curves in $\mathbb{C}P^2$ through 3d-1 points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>620</td>
</tr>
<tr>
<td>5</td>
<td>87,304</td>
</tr>
<tr>
<td>6</td>
<td>26,312,976</td>
</tr>
<tr>
<td>7</td>
<td>14,616,808,192</td>
</tr>
</tbody>
</table>
Open Gromov-Witten theory \((g = 0)\)

Setting: \((X, \omega, J)\) symplectic manifold with almost complex structure

\[L \subset X \text{ a Lagrangian submanifold } \quad (\dim L = \frac{1}{2} \dim X, \omega|_L = 0) \]

Example: \((X, L, \omega, J) = (\mathbb{C}P^n, \mathbb{R}P^n, \omega_{FS}, J_0)\)

Problem: Count \(J\)-holomorphic maps from the disk

\[u: (D, \partial D) \to (X, L) \]

that satisfy various constraints.
The moduli space of disk maps

$$\overline{\mathcal{M}}_{k,l}(\beta) = \left\{ \left(u: (D, \partial D) \xrightarrow{\text{j-hol.}} (X, L), z_1, \ldots, z_k, w_1, \ldots, w_l \right) : [u] = \beta \in H_2(X, L; \mathbb{Z}) \right\} / \sim$$

Compactification:
Rephrasing the problem

Count elements of $\mathcal{M}_{k,l}(\beta)$ such that the marked points are mapped to given constraints

Can be expressed as an integral:

$$OGW_\beta(\alpha_1, \ldots, \alpha_k; \gamma_1, \ldots \gamma_l) =$$

$$= \int_{\mathcal{M}_{k,l}(\beta)} evb_1^* \alpha_1 \wedge \cdots \wedge evb_k^* \alpha_k \wedge evi_1^* \gamma_1 \wedge \cdots \wedge evi_l^* \gamma_l.$$

Issue: $\partial \mathcal{M}_{k,l}(\beta) \neq \emptyset$.
Some previous results

OGW are defined when

• S^1 acts on (X, L) \((Liu, 2004)\)
• (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X = 2,3$, real interior constraints, point boundary constraints \((Cho, Solomon, 2006)\)
• (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X$ odd, no boundary constraints \((Georgieva, 2013)\)

OGW are computable via a WDVV-like equation when

• (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X = 2$, real interior constraints, point boundary constraints \((Horev-Solomon, 2012)\)
• (X, L, ω, J) is a real symplectic manifold with $\dim_{\mathbb{C}} X$ odd, no boundary constraints \((Georgieva-Zinger, 2013)\)
\(A_\infty \) structure

= Algebraic language to describe boundary behavior

- \(A_\infty \) operators describe disks with prescribed boundary constraints
- \(A_\infty \) relations describe disk bubbling

\[\partial \left(\{ \ldots \} \right) = \{ \ldots \} + \{ \ldots \} \]

- Special kind of boundary constraint: “bounding chain”
More results (joint with Jake Solomon)

• \(OGW \) can be defined using bounding chains when \(\dim_\mathbb{C} X \) is odd, under cohomological conditions. E.g., \(H^* (L; \mathbb{R}) = H^* (S^n; \mathbb{R}) \).

• The boundary constraints can be interpreted as points.

• Whenever defined, \(OGW \) satisfy open WDVV equations.

• For \((\mathbb{C}P^n, \mathbb{R}P^n) \), all invariants are determined by the open WDVV.
\((X, L) = (\mathbb{CP}^n, \mathbb{RP}^n)\)

Initial condition: \(OGW_{1,2}^n = 2\)

<table>
<thead>
<tr>
<th>dim = n</th>
<th>degree = d</th>
<th>No. of boundary points = k</th>
<th>Resulting invariant (OGW_{d,k}^n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>14</td>
<td>-29,178</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
<td>35,513,586</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>8</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>14</td>
<td>1974</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>20</td>
<td>-42,781,410</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>26</td>
<td>7,024,726,794,150</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>10</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>18</td>
<td>35,498</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>26</td>
<td>-40,083,246,650</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>34</td>
<td>680,022,893,749,060,370</td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>12</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>22</td>
<td>587,334</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>32</td>
<td>-31,424,766,229,890</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>42</td>
<td>49,920,592,599,715,322,910,150</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
<td>34</td>
<td>2,247,512,778</td>
</tr>
</tbody>
</table>
More questions

• Reduce cohomological assumptions
• Find structure suitable for $g > 0$

• Explore relative quantum cohomology

open WDVV \leftrightarrow associativity of relative quantum product
Thank you