Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions

Shige Peng, Shandong University, Princeton University

Non-equilibrium Dynamics and Random Matrices
April 22, 2014, IAS
Recall: Heat equation

A classical heat equation:

$$\partial_t u(t, x) + \frac{1}{2} \Delta u(t, x) = 0, \quad t \in [0, T),$$

$$u(T, x) = \varphi(x), \quad x \in \mathbb{R}^d.$$

Consider u as a function of path $u(t, \omega(t))$, $\omega \in \Omega = C_0^d([0, T]).$
Heat equation on path space

- Solve the heat equation for solutions defined on the path space Ω of the form

$$u = u(t, \omega) = u(t, \omega(s)_{0 \leq s \leq t}), \text{ given: } u(T, \omega) = \varphi(\omega(s)_{0 \leq s \leq T}).$$

- Simple and typical situation: u is finite dimensional function of (t, ω)

$$D_t u(t, \omega) + \frac{1}{2} tr[D^2_x u(t, \omega)] = 0, \quad t \in [0, T), \quad (1)$$

$$u(T, \omega) = \varphi(\omega(t_1), \cdots, \omega(t_n)) \in C^\infty_{f.d.}(\Omega_T).$$

- Many stochastic processes has a form $u(t, \omega(s)_{s \in [0, t]})$, typically: Itô's process.
Derivatives of path process

- Define a ‘good’ $D_t u(t, \omega)$, $D_x u(t, \omega)$, $D_x^2 u(t, \omega)$ for

 $$u = u(t, \omega) = u(t, \omega(s)_{0 \leq s \leq t})$$

- Begin from a very simple case, for $0 = t_0 < t_1 < \cdots < t_n = T$,

 $$u(t, \omega) = \begin{cases}
 u_{\omega(t_1)}, \ldots, \omega(t_{n-1})(t, \omega(t)), & t \in [t_{n-1}, t_n] \\
 \vdots \\
 u_{\omega(t_1)}, \ldots, \omega(t_{k-1})(t, \omega(t)), & t \in [t_{k-1}, t_k] \\
 \vdots \\
 u(t, \omega(t)), & t \in [0, t_1]
 \end{cases}$$

with $u_{\omega(t_1)}, \ldots, \omega(t_{k-1})(\omega(t_k), t_k) = u_{\omega(t_1)}, \ldots, \omega(t_k)(\omega(t_k), t_k)$
Derivatives of path process

- Define a ‘good’ $D_t u(t, \omega), D_x u(t, \omega), D_x^2 u(t, \omega)$ for

$$u = u(t, \omega) = u(t, \omega(s)_{0 \leq s \leq t})$$

- Begin from a very simple case, for $0 = t_0 < t_1 < \cdots < t_n = T$,

$$u(t, \omega) = \begin{cases}
 u_{\omega(t_1), \cdots, \omega(t_{n-1})}(t, \omega(t)), & t \in [t_{n-1}, t_n] \\
 \vdots \\
 u(t, \omega(t)), & t \in [0, t_1]
\end{cases}$$

with $u_{\omega(t_1), \cdots, \omega(t_{k-1})}(\omega(t_k), t_k) = u_{\omega(t_1), \cdots, \omega(t_k)}(\omega(t_k), t_k)$
Derivatives of path process

- Define a ‘good’ $D_t u(t, \omega)$, $D_x u(t, \omega)$, $D_x^2 u(t, \omega)$ for

$$u = u(t, \omega) = u(t, \omega(s)_{0 \leq s \leq t})$$

- Begin from a very simple case, for $0 = t_0 < t_1 < \cdots < t_n = T$,

$$u(t, \omega) = \begin{cases}
 u_{\omega(t_1), \cdots, \omega(t_{n-1})}(t, \omega(t)), & t \in [t_{n-1}, t_n] \\
 \omega(t_1), \cdots, \omega(t_{k-1})(\omega(t_k), t_k) = u_{\omega(t_1), \cdots, \omega(t_k)}(\omega(t_k), t_k)
\end{cases}$$

Shige Peng, Shandong University, Princeton University
Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions
Non-equilibrium Dynamics and Random Matrices April 22, 2014, IAS 4
Define a ‘good’ $D_t u(t, \omega)$, $D_x u(t, \omega)$, $D_x^2 u(t, \omega)$ for

$$u = u(t, \omega) = u(t, \omega(s)_{0 \leq s \leq t})$$

Begin from a very simple case, for $0 = t_0 < t_1 < \cdots < t_n = T$,

$$u(t, \omega) = \begin{cases}
 u_{\omega(t_1)}, \ldots, \omega(t_{n-1})(t, \omega(t)), & t \in [t_{n-1}, t_n] \\
 \vdots \\
 u_{\omega(t_1)}, \ldots, \omega(t_{k-1})(t, \omega(t)), & t \in [t_{k-1}, t_k] \\
 \vdots \\
 u(t, \omega(t)), & t \in [0, t_1]
\end{cases}$$

with $u_{\omega(t_1)}, \ldots, \omega(t_{k-1})(\omega(t_k), t_k) = u_{\omega(t_1), \ldots, \omega(t_k)}(\omega(t_k), t_k)$
Solving path PDE

To find $u \in C^{1,2}_f(0, T) (u_{\omega(t_1), \cdots, \omega(t_{k-1})}(t, x), C^{1,2}$-function of $(t, x))$, solution of (1).

\[
D_t u(t, \omega) := \partial_t u_{\omega(t_1), \cdots, \omega(t_{k-1})}(t, \omega(t)),
\]
\[
D_x u(t, \omega) =: \partial_x u_{\omega(t_1), \cdots, \omega(t_{k-1})}(t, \omega(t)),
\]
\[
D^2_x u(t, \omega) =: \partial^2_x u_{\omega(t_1), \cdots, \omega(t_{k-1})}(t, \omega(t)), \quad t \in [t_{k-1}, t_k)
\]
Expectation induced by through path PDE

\[D_t u(t, \omega) + \frac{1}{2} D_x^2 u(t, \omega) = 0, \]
\[u(T, \omega) = \varphi(\omega(t_1), \cdots, \omega(t_n)) \in C_{f.d.}^\infty(\Omega_T) \]

- We define \(\mathbb{E}[\varphi(\omega)] := u(0, \omega(0)) \). \(\mathbb{E}[\cdot] : C_{f.d.}^\infty(\Omega_T) \mapsto \mathbb{R} \) is a linear functional s.t.

 \[
 \mathbb{E}[\varphi(\omega)] \geq 0, \quad \text{if } \varphi \geq 0
 \]
 \[
 \mathbb{E}[c] = c, \quad \text{c is constant}
 \]
 \[
 \mathbb{E}[\varphi_i(\omega)] \downarrow 0, \quad \text{if } \varphi_i(\omega) \downarrow 0,
 \]
By Daniell-Stone theorem, there exists a unique probability measure P on $(\Omega, \mathcal{B}(\Omega)) = (\Omega, \mathcal{F})$ such that

$$
\mathbb{E}[\varphi(\omega)] = \int_{\Omega} \varphi(\omega) dP.
$$

$B_t(\omega) = \omega(t) \sim B_{h+t} - B_h$ indep. $(B_{h_1}, \cdots, B_{h_n})$ is a Brownian motion under P, P is a Wiener process.
Generalization to obtain sharper and more powerful tool: Consider HJB equation.

\[
\partial_t u(t, x) + G(D^2 u(t, x)) = 0, \quad t \in [0, T), \quad \text{(G-equ.)}
\]

\[
u(T, x) = \varphi(x), \quad x \in \mathbb{R}.
\]

with \(G(\alpha) = \frac{\bar{\sigma}^2}{2} \alpha^+ - \frac{\sigma^2}{2} \alpha^-, \) \(\bar{\sigma} \geq 1 \geq \sigma > 0. \) Solve path G-equation permits us to introduce a new type of Brownian motion under probability model uncertainty.
Nonlinear PDE and nonlinear expectation

Solve \(u \in C^{1,2}_{f,d}(0, T) \), solution of,

\[
D_t u(t, \omega) + G(D^2_x u(t, \omega)) = 0, \quad t \in [0, T),
\]

\[
u(T, \omega) = \varphi(\omega(t_1), \ldots, \omega(t_n)) \in C_\infty f.d. (\Omega_T).
\]

Then we define \(\hat{E}[\varphi(\omega)] = u(0, \omega(0)) \). \(\hat{E}[\cdot] : C_\infty f.d. (\Omega_T) \mapsto \mathbb{R} \) is a sublinear functional s.t.

\[
\begin{align*}
\hat{E}[\varphi(\omega)] & \geq \hat{E}[\psi(\omega)], & \text{if } \varphi \geq \psi \\
\hat{E}[c] & = c, & c \text{ is constant} \\
\hat{E}[\varphi_i(\omega)] & \downarrow 0 & \text{if } \varphi_i(\omega) \downarrow 0.
\end{align*}
\]

(P. 2005-2010)
By Daniell-Stone and Hahn-Banach theorems, there exists a family of probability measures \(\{P_\theta\}_{\theta \in \Theta} \) on \((\Omega, \mathcal{F})\) such that

\[
\hat{E}[\varphi(\omega)] = \sup_{\theta \in \Theta} \int_{\Omega} \varphi(\omega) dP_{\theta}.
\]

\(B_t(\omega) = \omega(t) \sim B_{h+t} - B_h\) indep. \((B_{h_1}, \cdots, B_{h_n})\), namely, \(B_t(\omega)\) is a Brownian motion under the sublinear expectation \(\hat{E}\).
Moreover $\| \cdot \|_{L^p_G} := \hat{E}[| \cdot |^p]^{1/p}$ forms a norm on $C^\infty_{f.d.}(\Omega_T)$.

\[
\| u \|_{S^p_G} := \left\| \sup_{0 \leq t \leq T} |u(t, \omega)| \right\|_{L^p_G},
\]

\[
\| u \|_{H^p_G} := \left\| (\int_0^T |u(t, \omega)|^p \, ds)^{1/p} \right\|_{L^1_G},
\]

\[
\| u \|_{M^p_G} := \left\| \int_0^T |u(t, \omega)|^p \, ds \right\|_{L^1_G}^{1/p},
\]

\[
\| u \|_{W^{1,2;p}_G(0, T)} := \| u \|_{S^p_G} + \| D_x u \|_{H^p_G} + \| |D_t u| + |D_x^2 u| \|_{M^p_G},
\]

$\| u \|_{W^{1,2;p}_G(0, T)}$ forms a “Sobolev norm” on $C^\infty_{f.d.}(0, T)$.

Shige Peng, Shandong University, Princeton
Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions
Non-equilibrium Dynamics and Random Matrices April 22, 2014, IAS 11
Itô’s calculus in $\mathcal{W}^{1,2;p}_G(0, T)$ space

Itô’s integrals are well defined:

- $\int_0^T \beta(s, \omega) dB_s$, $\beta \in H^p_G(0, T)$
Itô’s calculus in $W_{G}^{1,2;p}(0, T)$ space

Itô’s integrals are well defined:

- $\int_{0}^{T} \beta(s, \omega) dB_s$, $\beta \in H_{G}^{p}(0, T)$
- $\int_{0}^{t} \gamma(s, \omega) \langle B \rangle_s$, $\gamma \in M_{G}^{p}(0, T)$
Itô’s calculus in $W^{1,2;p}_{G}(0, T)$ space

Itô’s integrals are well defined:

- $\int_0^T \beta(s, \omega) dB_s$, $\beta \in H^p_G(0, T)$
- $\int_0^t \gamma(s, \omega) \langle B \rangle_s$, $\gamma \in M^p_G(0, T)$
- $\langle B \rangle_t := B_t^2 - 2 \int_0^t B_s dB_s = \lim_{\Delta N \to 0} \sum_{j=0}^{N-1} (B_{t_{j+1}^N} - B_{t_j^N})^2$.
Distinguishability of Itô process by G-expectation

Itô’s process

\[u(t, \omega) = u(0, 0) + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \langle B \rangle_s \]

\[\alpha, \gamma \in M^p_G(0, T), \quad \beta \in H^p_G(0, T). \]

is well defined (P. 2006, 2010).
Distinguishability of Itô process by G-expectation

Itô’s process

\[u(t, \omega) = u(0, 0) + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \langle B \rangle_s \]

\[\alpha, \gamma \in M_G^p(0, T), \quad \beta \in H_G^p(0, T). \]

is well defined (P. 2006, 2010). Moreover,

Proposition (Song 2012).

\[u \equiv 0 \iff \]
Distinguishability of Itô process by G-expectation

Itô’s process

\[u(t, \omega) = u(0, 0) + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \langle B \rangle_s \]

\[\alpha, \gamma \in M^p_G(0, T), \quad \beta \in H^p_G(0, T). \]

is well defined (P. 2006, 2010). Moreover,

Proposition (Song 2012).

\[u \equiv 0 \iff u(0, 0) = 0 \text{ and } \alpha, \beta, \gamma \equiv 0 \]
Itô’s process \iff Itô’s formula

For each $u \in C^{1,2}([t_k, t_{k+1}] \times \mathbb{R})$, $t \in [t_k, t_{k+1})$,

$$u(t, B_t) - u(t_k, B_{t_k}) = \int_{t_k}^{t} \partial_s u(s, B_s) ds + \int_{t_k}^{t} \partial_x u(s, B_s) dB_s$$

$$+ \frac{1}{2} \int_{t_k}^{t} \partial_{xx}^2 u(s, B_s) d\langle B \rangle_s$$

Consequently, for each $u \in C_{f.d}^\infty(0, T)$, we have

$$u(t, B.) - u(0, B_0) = \int_{0}^{t} D_s u(s, B.) ds + \int_{0}^{t} D_x u(s, B.) dB_s$$

$$+ \frac{1}{2} \int_{0}^{t} D_{xx}^2 u(s, B.) d\langle B \rangle_s.$$
Closability of D_t, D_x and D_x^2

Proposition (P. & Song 2013). The norm $\| \cdot \|_{W_G^{1,2;p}}$ is closable in the space $S_p^G(0, T)$: Let $u_n \in C_{f.d}^\infty(0, T)$ be a Cauchy sequence w.r.t. the norm $\| \cdot \|_{W_G^{1,2;p}}$, if $\|u_n\|_{S_p^G} \to 0$, then $\|u_n\|_{W_G^{1,2;p}} \to 0$.

\[\square \]
Proposition (P. & Song 2013).

Assume that $u \in S^p_G(0, T)$. Then the following two conditions are equivalent:

(i) $u \in W^{1,2;p}_G(0, T)$;

(ii) u is an Itô process: there are $\alpha, \gamma \in M^p_G(0, T)$, $\beta \in H^p_G(0, T)$, such that

$$u(t, \omega) = u(0, 0) + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \langle B \rangle_s.$$

Moreover, we have

$$D_t u(t, \omega) = \alpha(t, \omega), \quad D_x u(t, \omega) = \beta(t, \omega), \quad D^2_x u(t, \omega) = \gamma(t, \omega).$$
Example

\[u(t, \omega) = \int_0^t \alpha(s, \omega) \, ds: \quad D_t u(t, \omega) = \alpha(t, \omega), \quad D_x u(t, \omega) \equiv 0, \]
\[D_x^2 u(t, \omega) \equiv 0, \]
Examples

Example

\(u(t, \omega) = \int_0^t \alpha(s, \omega) \, ds: \) \(D_t u(t, \omega) = \alpha(t, \omega), \ D_x u(t, \omega) \equiv 0, \)
\(D_{xx}^2 u(t, \omega) \equiv 0, \)

Example

\(u(t, \omega) = \int_0^t \beta(s, \omega) \, dB_s: \) \(D_t u(t, \omega) = 0, \ D_x u(t, \omega) \equiv \beta(t, \omega), \)
\(D_{xx}^2 u(t, \omega) \equiv 0, \)

if \(\beta(s, \omega) = B(s, \omega), \) then \(D_x \beta(t, \omega) = 1. \)

In general \(D_x(D_x u(t, \omega)) \neq D_{xx}^2 u(t, \omega)! \)
Examples

Example

\[u(t, \omega) = \int_0^t \alpha(s, \omega) \, ds: \quad D_t u(t, \omega) = \alpha(t, \omega), \quad D_x u(t, \omega) \equiv 0, \quad D_{xx}^2 u(t, \omega) \equiv 0, \]

Example

\[u(t, \omega) = \int_0^t \beta(s, \omega) \, dB_s: \quad D_t u(t, \omega) = 0, \quad D_x u(t, \omega) \equiv \beta(t, \omega), \quad D_{xx}^2 u(t, \omega) \equiv 0, \]

\[\text{if } \beta(s, \omega) = B(s, \omega), \text{ then } D_x \beta(t, \omega) = 1. \]

In general \(D_x (D_x u(t, \omega)) \neq D_{xx}^2 u(t, \omega)! \)

Example

\[u(t, \omega) = \langle B \rangle_t (\omega): \quad D_t u(t, \omega) = 0, \quad D_x u(t, \omega) \equiv 0, \quad D_{xx}^2 u(t, \omega) \equiv 2. \]
SDE (stochastic differential equation) and related path PDE

\[
X_t(\omega) = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s + \int_0^t \kappa(X_s) \, d\langle B \rangle_s. \quad \text{(SDE)}
\]
SDE (stochastic differential equation) and related path PDE

\[X_t(\omega) = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s + \int_0^t \kappa(X_s) \, d\langle B \rangle_s. \] (SDE)

Theorem

We assume that \(b(x) \), \(\sigma(x) \) and \(\kappa(x) \) are all Lipschitz functions of \(x \). Then there exists a unique solution \(X \in S^p_G(0, T) \) ([Peng2006,2008]).
SDE (stochastic differential equation) and related path PDE

\[X_t(\omega) = X_0 + \int_0^t b(X_s) \, ds + \int_0^t \sigma(X_s) \, dB_s + \int_0^t \kappa(X_s) \, d\langle B \rangle_s. \quad (\text{SDE}) \]

Theorem

We assume that \(b(x), \sigma(x) \) and \(\kappa(x) \) are all Lipschitz functions of \(x \). Then there exists a unique solution \(X \in S^p_G(0, T) \) ([Peng2006,2008]). Consequently \(u(t, \omega) := X_t(\omega) \in W^{1,2;p}_G(0, T) \), and it is the unique solution of the PDE

\[
D_t u(t, \omega) = b(u(t, \omega)), \quad D_x u(t, \omega) = \sigma(u(t, \omega)), \\
D_{xx} u(t, \omega) = 2\kappa(u(t, \omega))
\]

with initial condition \(u(0, 0) = X_0 \in \mathbb{R} \).
Backward SDE:

\[Y_t(\omega) = \xi(\omega) + \int_t^T f(Y_s, Z_s, \eta_s) \, ds - \int_t^T Z_s \, dB_s - (K_T - K_t), \]

\[K_t = \frac{1}{2} \int_0^t \eta_s \, d\langle B \rangle_s - \int_0^t G(\eta_s) \, ds. \]

Problem: Given \(\xi \in L^p_G(\Omega_T) \) and Lipschitz function \(f(y, z, \eta) \), to find a unique triple

\[Y \in S^p_G(0, T), \ Z \in H^p_G(0, T) \text{ and } \eta \in M^p_G(0, T) \]

which solve the (BSDE).
Theorem (P.&Song2013)

Let \((Y, Z, \eta)\) be a solution of the above BSDE. Then
\[
u(t, \omega) := Y_t(\omega) \in W^{1,2;p}_G\]
is a solution of
\[
D_t u(t, \omega) + G(D^2_{xx} u(t, \omega)) + f(u, D_x u, D^2_x u)(t, \omega) = 0,
\]
\[
u(T, \omega) = \xi(\omega).
\]

with \(D_x u(t, \omega) = Z(t, \omega)\) and \(D^2 u(t, \omega) = \eta(t, \omega)\). Conversely, if
\[
u(t, \omega) \in W^{1,2;p}_G(0, T)\]
is a solution of this PDE. Then
\[
(Y, Z, \eta) = (u, D_x u, D^2 u)(t, \omega)\]
is a solution of (BSDE).
Space $W_{\mathcal{G}}^{1,1;p}(0, T), \ (W_{\mathcal{A}}^{1,1;p}(0, T))$

Weaker solution in $u \in W_{\mathcal{G}}^{1,1;p}(0, T)$ write in the form

$$u(t, \omega) = u_0 + \int_0^t \mathcal{A}_G u(s, \omega) \, ds + \int_0^t D_x u(s, \omega) \, dB_s + K_t(\omega)$$

$$\mathcal{A}_G u := D_s u + G(D^2_x u(s, \omega)),$$

$$K_t(\omega) := \frac{1}{2} \int_0^t D^2_x u(s, \omega) \, d\langle B \rangle_s - \int_0^t G(D^2_x u(s, \omega)) \, ds.$$

$$d_{W_{\mathcal{G}}^{1,1;p}}(u, v) = \|u - v\|_{S_G^p} + \|\mathcal{A}_G u - \mathcal{A}_G v\|_{M_G^p} + \|D_x (u - v)\|_{H_G^p}$$

The path PDE:

$$D_t u + G(D^2_x u) + f(u, Du) = \mathcal{A}_G u(t, \omega) + f(u, D_x u)(t, \omega) = 0.$$
Theorem (P. & Song 2014)

(i) If \((Y, Z, K)\) is the solution of backward SDE

\[
Y_t(\omega) = \xi(\omega) + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dB_s - (K_T - K_t)
\]

Then \(u(t, \omega) := Y_t(\omega) \in W^{\frac{1}{2}, 1; p}_G(0, T)\) is the solution of the path PDE

\[
D_t u(t, \omega) + G(D_x^2 u(t, \omega)) + f(u, D_x u)(t, \omega) = 0, \quad u(T, \omega) = \xi(\omega).
\]
Theorem (P. & Song 2014)

(i) If \((Y, Z, K)\) is the solution of backward SDE

\[
Y_t(\omega) = \xi(\omega) + \int_t^T f(s, Y_s, Z_s)ds - \int_t^T Z_s dB_s - (K_T - K_t)
\]

Then \(u(t, \omega) := Y_t(\omega) \in \mathcal{W}^{1, p}_G(0, T)\) is the sol. of the path PDE

\[
D_t u(t, \omega) + G(D_x^2 u(t, \omega)) + f(u, D_x u)(t, \omega) = 0, \quad u(T, \omega) = \xi(\omega).
\]

(ii) Conversely, if \(u \in \mathcal{W}^{1, p}_G(0, T)\) solves the above PDE, then \((Y, Z, K) = (u, D_x u, K)\) solves the BSDE, where

\[
K_t = u(t, \omega) + \int_0^t f(u, D_x u)ds - \int_0^t D_x u(s, \omega) dB_s
\]
Feynman-Kac formula of fully nonlinear path PDE

Theorem (P. & Song 2014)

(i) If \((Y, Z, K)\) is the solution of backward SDE

\[Y_t(\omega) = \xi(\omega) + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dB_s - (K_T - K_t) \]

Then \(u(t, \omega) := Y_t(\omega) \in W^{\frac{1}{2}, 1; p}_G(0, T)\) is the sol. of the path PDE

\[D_t u(t, \omega) + G(D^2_x u(t, \omega)) + f(u, D_x u)(t, \omega) = 0, \quad u(T, \omega) = \xi(\omega). \]

(ii) Conversely, if \(u \in W^{\frac{1}{2}, 1; p}_G(0, T)\) solves the above PDE, then \((Y, Z, K) = (u, D_x u, K)\) solves the BSDE, where

\[K_t = u(t, \omega) + \int_0^t f(u, D_x u) \, ds - \int_0^t D_x u(s, \omega) \, dB_s \]

Existence and uniqueness of BSDE: obtained in [Hu-Ji-P. & Song 2012].
Case without probability measure uncertainty: $G(a) = \frac{a}{2}$

- $\partial_t u + G(D^2 u) = 0 \iff \partial_t u + \frac{1}{2} \Delta u = 0$
Case without probability measure uncertainty: $G(a) = \frac{a}{2}$

- $\partial_t u + G(D^2 u) = 0 \implies \partial_t u + \frac{1}{2} \Delta u = 0$
- $\hat{E}[\cdot] = E[\cdot] = E_P[\cdot]$
Case without probability measure uncertainty: $G(a) = \frac{a}{2}$

- $\partial_t u + G(D^2 u) = 0 \implies \partial_t u + \frac{1}{2} \Delta u = 0$
- $\hat{E}[\cdot] = E[\cdot] = E_P[\cdot]$
- $\{P_\theta\}_{\theta \in \Theta} = \{P\}$, P is a Wiener measure
- $\langle B \rangle_t \equiv t$, P-a.s.
Case without probability measure uncertainty: $G(a) = \frac{a}{2}$

- $\partial_t u + G(D^2 u) = 0 \implies \partial_t u + \frac{1}{2} \Delta u = 0$
- $\hat{E}[\cdot] = E[\cdot] = E_P[\cdot]$
- $\{P_\theta\}_{\theta \in \Theta} = \{P\}$, P is a Wiener measure
- $\langle B \rangle_t \equiv t$, P-a.s.
Case without probability measure uncertainty: $G(a) = \frac{a}{2}$

- SDE: $dX = b(X)dt + \sigma(X)dB_t + \kappa(X)d\langle B \rangle_t$,
- But we are unable to distinguish dt part and $d\langle B \rangle$ part
- $dX = (b(X) + \kappa(X))dt + \sigma(X)dB_t$, P-a.s.
- The corresponding PDE: $u(t, \omega) = X_t(\omega)$:

\[
D_t u(t, \omega) + D_{xx}^2 u(t, \omega) = b(u(t, \omega)) + \kappa(u(t, \omega)),
\]
\[
D_x u(t, \omega) = \sigma(u(t, \omega)), \quad u(0, \omega(0)) = X_0.
\]

- This PDE is unique under the Wiener measure P, provided the initial condition $X_0 \in \mathbb{R}$.
3) For BSDE

\[Y_t(\omega) = \xi(\omega) + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dB_s - (K_T - K_t) \]

Since \(K_t = \frac{1}{2} \int_0^t D_x^2 u(s, \omega) \, d\langle B \rangle_s - \int_0^t G(D_x^2 u(s, \omega)) \, ds \equiv 0 \), thus the term \(K_t \) disappear under the Wiener measure \(P \). The equation becomes the classical BSDE: to solve \((Y, Z)\), the solution of

\[Y_t(\omega) = \xi(\omega) + \int_t^T f(s, Y_s, Z_s) \, ds - \int_t^T Z_s \, dB_s. \]
The corresponding path-PDE becomes
\[\partial_t u(t, \omega) + \frac{1}{2} \Delta u(t, \omega) + f(u, D_x u)(t, \omega) = 0, \quad u(T, \omega) = \xi(\omega). \]

The solution is defined under the norm
\[\| u \|_{W^{\frac{1}{2}, 1;p}(0, T)} = \| u \|_{S^p_P(0, T)} + \left\| (D_t + \frac{1}{2} \Delta) u \right\|_{M^p_P(0, T)} + \| D_x u \|_{H^p_P(0, T)} \]
which is closable in \(S^p_P(0, T) \).

The smooth solution is given in (P&Wang2011) using a very different (BSDE) method.
Conclusions:

- We define derivatives of processes of path;
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C_{f,d}^\infty(0, T)$ and $D_t u$, $D_x u$, $D_x^2 u$
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C^\infty_{f,d}(0, T)$ and $D_t u, D_x u, D_x^2 u$
- Use it to solve a typical path-PDE

$$D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi$$
Conclusions:

- We define derivatives of processes of path;
- Firstly in \(C_{f,d}^\infty(0, T) \) and \(D_t u, D_x u, D_x^2 u \);
- Use it to solve a typical path-PDE

\[
D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi
\]

- Then use it to induce an expectation then the related norms
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C_{f,d}^\infty(0, T)$ and $D_t u$, $D_x u$, $D_x^2 u$
- Use it to solve a typical path-PDE

$$D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \phi$$

- Then use it to induce an expectation then the related norms
- Under the norm the Itô’s

$$u(t, \omega) = u_0 + \int_0^t \alpha(s, \omega) ds + \int_0^t \beta(s, \omega) dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) d\langle B\rangle_s$$
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C_{f,d}^{\infty}(0, T)$ and $D_t u, D_x u, D_x^2 u$
- Use it to solve a typical path-PDE

\[D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi \]

- Then use it to induce an expectation then the related norms
- Under the norm the Itô’s

\[u(t, \omega) = u_0 + \int_0^t \alpha(s, \omega) ds + \int_0^t \beta(s, \omega) dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) d\langle B \rangle_s \]

- Reveal: each term of a Itô’s process its derivative. There for any SDE and BSDE have the corresponding path-PDE.
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C_{f,d}^\infty(0, T)$ and $D_t u$, $D_x u$, $D_x^2 u$
- Use it to solve a typical path-PDE

$$D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi$$

- Then use it to induce an expectation then the related norms
- Under the norm the Itô’s

$$u(t, \omega) = u_0 + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \, d\langle B \rangle_s$$

- Reveal: each term of a Itô’s process its derivative. Therefore for any SDE and BSDE have the corresponding path-PDE.
- Wiener measure corresponds to a heat equation, some important terms are hidden (cannot be distinguished) through this measure.
Conclusions:

- We define derivatives of processes of path.
- Firstly in $C^\infty_{f,d}(0, T)$ and $D_t u, D_x u, D_x^2 u$.
- Use it to solve a typical path-PDE:

$$D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi$$

- Then use it to induce an expectation then the related norms.
- Under the norm the Itô’s:

$$u(t, \omega) = u_0 + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \, d\langle B \rangle_s$$

- Reveal: each term of a Itô’s process its derivative. There for any SDE and BSDE have the corresponding path-PDE.
- Wiener measure correponds to a heat equation, some important terms are hidden (cannot be distinguished) through this measure.
- Prospectives
Conclusions:

- We define derivatives of processes of path;
- Firstly in $C_{f,d}^\infty(0, T)$ and $D_t u, D_x u, D_x^2 u$
- Use it to solve a typical path-PDE

$$D_t u + G(D^2 u) = 0, \quad u(T, \omega) = \varphi$$

- Then use it to induce an expectation then the related norms
- Under the norm the Itô’s

$$u(t, \omega) = u_0 + \int_0^t \alpha(s, \omega) \, ds + \int_0^t \beta(s, \omega) \, dB_s + \frac{1}{2} \int_0^t \gamma(s, \omega) \, d\langle B \rangle_s$$

- Reveal: each term of a Itô’s process its derivative. There for any SDE and BSDE have the corresponding path-PDE.
- Wiener measure correponds to a heat equation, some important terms are hidden (cannot be distinguished) through this measure.
- Prospectives
Framework of Nonlinear (G) Expectation:

$$G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-)$$

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ω, \mathcal{F}, P)</td>
<td>$(\Omega, \mathcal{H}, \mathbb{E})$: (sublinear is basic)</td>
</tr>
</tbody>
</table>

Distributions: $X \overset{d}{=} Y$

Independence: Y indep. of X

LLN and CLT

Normal distributions

Brownian motion $B_t(\omega) = \omega_t$

Quadratic variable. $\langle B \rangle_t = t$

Lévy process

Shige Peng, Shandong University, Princeton
Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions
Non-equilibrium Dynamics and Random Matrices
April 22, 2014, IAS 28
Framework of Nonlinear (G) Expectation:

\[G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-) \]

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Omega, \mathcal{F}, P))</td>
<td>((\Omega, \mathcal{H}, \mathbb{E})): (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: (X \overset{d}{=} Y)</td>
<td>(X \overset{d}{=} Y),</td>
</tr>
<tr>
<td>Independence: (Y) indep. of (X)</td>
<td></td>
</tr>
<tr>
<td>LLN and CLT</td>
<td></td>
</tr>
<tr>
<td>Normal distributions</td>
<td></td>
</tr>
<tr>
<td>Brownian motion (B_t(\omega) = \omega_t)</td>
<td></td>
</tr>
<tr>
<td>Quadratic variable. (\langle B \rangle_t = t)</td>
<td></td>
</tr>
<tr>
<td>Lévy process</td>
<td></td>
</tr>
</tbody>
</table>
Framework of Nonlinear \((G)\) Expectation:
\[G(a) = \frac{1}{2} (\sigma^2 a^+ - \sigma^2 a^-) \]

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Omega, \mathcal{F}, P))</td>
<td>((\Omega, \mathcal{H}, \mathbb{E})): (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: (X \overset{d}{=} Y)</td>
<td>(X \overset{d}{=} Y),</td>
</tr>
<tr>
<td>Independence: (Y) indep. of (X)</td>
<td>(Y) indep. of (X), (non-symm.)</td>
</tr>
<tr>
<td>LLN and CLT</td>
<td></td>
</tr>
<tr>
<td>Normal distributions</td>
<td></td>
</tr>
<tr>
<td>Brownian motion (B_t(\omega) = \omega_t)</td>
<td></td>
</tr>
<tr>
<td>Quadratic variable. (\langle B \rangle_t = t)</td>
<td></td>
</tr>
<tr>
<td>Lévy process</td>
<td></td>
</tr>
</tbody>
</table>
Framework of Nonlinear (G) Expectation:

\[G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-) \]

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ω, \mathcal{F}, P</td>
<td>$\Omega, \mathcal{H}, \mathbb{E}$: (sublinear is basic)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distributions: $X \overset{d}{=} Y$</th>
<th>$X \overset{d}{=} Y$,</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Independence: Y indep. of X</th>
<th>Y indep. of X, (non-symm.)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LLN and CLT</th>
<th>LLN + CTL</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Normal distributions</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Brownian motion $B_t(\omega) = \omega_t$</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Quadratic variable. $\langle B \rangle_t = t$</th>
<th></th>
</tr>
</thead>
</table>

| Lévy process | |
Framework of Nonlinear (G) Expectation:

$$G(a) = \frac{1}{2}(\bar{\sigma}^2 a^+ - \underline{\sigma}^2 a^-)$$

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ω, \mathcal{F}, P)</td>
<td>$(\Omega, \mathcal{H}, \mathbb{E})$: (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: $X \overset{d}{=} Y$</td>
<td>$X \overset{d}{=} Y$,</td>
</tr>
<tr>
<td>Independence: Y indep. of X</td>
<td>Y indep. of X, (non-symm.)</td>
</tr>
<tr>
<td>LLN and CLT</td>
<td>LLN + CTL</td>
</tr>
<tr>
<td>Normal distributions</td>
<td>G-Normal distributions</td>
</tr>
<tr>
<td>Brownian motion $B_t(\omega) = \omega_t$</td>
<td></td>
</tr>
<tr>
<td>Quadratic variable. $\langle B \rangle_t = t$</td>
<td></td>
</tr>
<tr>
<td>Lévy process</td>
<td></td>
</tr>
</tbody>
</table>
Framework of Nonlinear \((G)\) Expectation:
\[G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-) \]

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Omega, \mathcal{F}, P))</td>
<td>((\Omega, \mathcal{H}, \mathbb{E})): (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: (X \overset{d}{=} Y)</td>
<td>(X \overset{d}{=} Y),</td>
</tr>
<tr>
<td>Independence: (Y) indep. of (X)</td>
<td>(Y) indep. of (X), (non-symm.)</td>
</tr>
<tr>
<td>LLN and CLT</td>
<td>LLN + CTL</td>
</tr>
<tr>
<td>Normal distributions</td>
<td>G-Normal distributions</td>
</tr>
<tr>
<td>Brownian motion (B_t(\omega) = \omega_t)</td>
<td>nonlinear B.M. (B_t(\omega) = \omega_t),</td>
</tr>
<tr>
<td>Quadratic variable. (\langle B \rangle_t = t)</td>
<td></td>
</tr>
<tr>
<td>Lévy process</td>
<td></td>
</tr>
</tbody>
</table>
Framework of Nonlinear (G) Expectation:

\[G(a) = \frac{1}{2}(\sigma^2 a^+ - \sigma^2 a^-) \]

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ω, \mathcal{F}, P)</td>
<td>$(\Omega, \mathcal{H}, \mathbb{E})$: (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: $X \overset{d}{=} Y$</td>
<td>$X \overset{d}{=} Y$,</td>
</tr>
<tr>
<td>Independence: Y indep. of X</td>
<td>Y indep. of X, (non-symm.)</td>
</tr>
<tr>
<td>LLN and CLT</td>
<td>LLN + CTL</td>
</tr>
<tr>
<td>Normal distributions</td>
<td>G-Normal distributions</td>
</tr>
<tr>
<td>Brownian motion $B_t(\omega) = \omega_t$</td>
<td>nonlinear B.M. $B_t(\omega) = \omega_t$,</td>
</tr>
<tr>
<td>Quadratic variable. $\langle B \rangle_t = t$</td>
<td>$\langle B \rangle_t$: still a nonlinear Brownian motion</td>
</tr>
<tr>
<td>Lévy process</td>
<td></td>
</tr>
</tbody>
</table>

\[\langle B \rangle_t = t \]

Shige Peng, Shandong University, Princeton

Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions

Non-equilibrium Dynamics and Random Matrices
April 22, 2014, IAS 28

/ 32
Framework of Nonlinear (G) Expectation:

$$G(a) = \frac{1}{2} (\bar{\sigma}^2 a^+ - \underline{\sigma}^2 a^-)$$

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Ω, \mathcal{F}, P)</td>
<td>$(\Omega, \mathcal{H}, \mathbb{E})$: (sublinear is basic)</td>
</tr>
<tr>
<td>Distributions: $X \overset{d}{=} Y$</td>
<td>$X \overset{d}{=} Y$,</td>
</tr>
<tr>
<td>Independence: Y indep. of X</td>
<td>Y indep. of X, (non-symm.)</td>
</tr>
<tr>
<td>LLN and CLT</td>
<td>LLN + CTL</td>
</tr>
<tr>
<td>Normal distributions</td>
<td>G-Normal distributions</td>
</tr>
<tr>
<td>Brownian motion $B_t(\omega) = \omega_t$</td>
<td>nonlinear B.M. $B_t(\omega) = \omega_t$,</td>
</tr>
<tr>
<td>Quadratic variable. $\langle B \rangle_t = t$</td>
<td>$\langle B \rangle_t$: still a nonlinear Brownian motion</td>
</tr>
<tr>
<td>Lévy process</td>
<td>nonlinear Lévy process</td>
</tr>
<tr>
<td>Probability Space</td>
<td>Nonlinear Expectation Space</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td></td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L}u = 0$</td>
<td></td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td></td>
</tr>
<tr>
<td>Martingales</td>
<td></td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
</tbody>
</table>
Framework of Nonlinear Expectation: nonlinear expectation

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B \rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - Lu = 0$</td>
<td></td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td></td>
</tr>
<tr>
<td>Martingales</td>
<td></td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
</tbody>
</table>
Framework of Nonlinear Expectation: nonlinear expectation

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B\rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L}u = 0$</td>
<td>$\partial_t u - G(t, x, u, Du, D^2u) = 0$</td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td></td>
</tr>
<tr>
<td>Martingales</td>
<td></td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
</tbody>
</table>

Shige Peng, Shandong University, Princeton
Nonlinear Brownian motion and nonlinear Feynman-Kac formula of path-functions
Non-equilibrium Dynamics and Random Matrices
April 22, 2014, IAS 29
<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B\rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L}u = 0$</td>
<td>$\partial_t u - G(t, x, u, Du, D^2u) = 0$</td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td>Nonlinear Markovian</td>
</tr>
<tr>
<td>Martingales</td>
<td></td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
</tbody>
</table>
Framework of Nonlinear Expectation: nonlinear expectation

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B\rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L}u = 0$</td>
<td>$\partial_t u - G(t, x, u, Du, D^2u) = 0$</td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td>Nonlinear Markovian</td>
</tr>
<tr>
<td>Martingales</td>
<td>nonlinear Martingales</td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
</tbody>
</table>

Shige Peng, Shandong University, Princeton
Framework of Nonlinear Expectation: nonlinear expectation

<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B\rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L}u = 0$</td>
<td>$\partial_t u - G(t, x, u, Du, D^2u) = 0$</td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td>Nonlinear Markovian</td>
</tr>
<tr>
<td>Martingales</td>
<td>nonlinear Martingales</td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
<tr>
<td>Probability Space</td>
<td>Nonlinear Expectation Space</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Itô’s calculus for BM</td>
<td>Itô’s calculus for nonlinear BM</td>
</tr>
<tr>
<td>SDE $dx_t = b(x_t)dt + \sigma(x_t)dB_t$</td>
<td>$dx_t = \cdots + \beta(x_t)d\langle B \rangle_t$</td>
</tr>
<tr>
<td>Diffusion: $\partial_t u - \mathcal{L} u = 0$</td>
<td>$\partial_t u - G(t, x, u, Du, D^2 u) = 0$</td>
</tr>
<tr>
<td>Markovian pro. and semi-grou</td>
<td>Nonlinear Markovian</td>
</tr>
<tr>
<td>Martingales</td>
<td>nonlinear Martingales</td>
</tr>
<tr>
<td>$E[X</td>
<td>\mathcal{F}_t] = E[X] + \int_0^T z_s dB_s$</td>
</tr>
<tr>
<td></td>
<td>$K_t = \int_0^t \eta_s d\langle B \rangle_s - \int_0^t 2G(\eta_s)ds$</td>
</tr>
<tr>
<td>Probability Space</td>
<td>Nonlinear Expectation Space</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>P-almost surely analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$X(\omega)$: P-quasi continuous</td>
<td></td>
</tr>
<tr>
<td>\iff X is $\mathcal{B}(\Omega)$-meas.</td>
<td></td>
</tr>
<tr>
<td>Probability Space</td>
<td>Nonlinear Expectation Space</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>P-almost surely analysis</td>
<td>\hat{c}-quasi surely analysis</td>
</tr>
<tr>
<td>$X(\omega)$: P-quasi continuous</td>
<td>X is $B(\Omega)$-meas.</td>
</tr>
<tr>
<td>Probability Space</td>
<td>Nonlinear Expectation Space</td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>P-almost surely analysis</td>
<td>\hat{c}-quasi surely analysis</td>
</tr>
<tr>
<td></td>
<td>$\hat{c}(A) = \sup_{\theta} E_{P_\theta}[1_A]$</td>
</tr>
</tbody>
</table>

$X(\omega)$: P-quasi continuous
$\iff X$ is $\mathcal{B}(\Omega)$-meas.
<table>
<thead>
<tr>
<th>Probability Space</th>
<th>Nonlinear Expectation Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-almost surely analysis</td>
<td>\hat{c}-quasi surely analysis</td>
</tr>
<tr>
<td>$\hat{c}(A) = \sup_{\theta} E_{P_\theta}[1_A]$</td>
<td></td>
</tr>
<tr>
<td>$X(\omega)$: P-quasi continuous</td>
<td>$X(\omega)$: \hat{c}-quasi surely continuous</td>
</tr>
<tr>
<td>$\iff X$ is $\mathcal{B}(\Omega)$-meas.</td>
<td>$\implies X$ is $\mathcal{B}(\Omega)$-meas.</td>
</tr>
</tbody>
</table>
Central Limit Theorem (CLT) under Knightian Uncertainty

Theorem

Let \(\{X_i\}_{i=1}^{\infty} \) be i.i.d.: \(X_i \sim X_1 \) and \(X_{i+1} \) Indep. \((X_1, \cdots, X_i) \). Assume:

\[
\hat{E}[|X_1|^{2+\alpha}] < \infty , \hat{E}[X_1] = \hat{E}[-X_1] = 0.
\]

Set: \(\overline{\sigma}^2 = \hat{E}[X_1^2] \), \(\underline{\sigma}^2 = -\hat{E}[-X_1^2] \). Then:

\[
\lim_{n \to \infty} \hat{E}[\varphi(\frac{X_1 + \cdots + X_n}{\sqrt{n}})] = \hat{E}[\varphi(B_1)], \ \forall \varphi \in C_b(\mathbb{R}),
\]

with \(B_1 \sim N(0, [\underline{\sigma}^2, \overline{\sigma}^2]) \).
Thank you
We consider situations of uncertainty
Probability method, distribution approach
People first think of
Probability space \((\Omega, \mathcal{F}, P)\),
Random variable \(X = X(\omega)\)
Distribution of \(X(\omega): F(A) = P(X \in A)\)
Typical models of distributions \(N(\mu, \sigma^2)\),
Stochastic processs: \(X_t(\omega)\)
It’s finite dimensional distribution:
\[F_{t_1, \ldots, t_n}(A_1 \times \cdots \times A_n) = P(X_{t_1} \in A_1, \cdots, X_{t_n} \in A_n)\]
Tyoical models of stochastic processes
Brownian motion, Poisson process, Levy process, martingales

Important problem: what can we do if we cannot determinate the probability, the distrubution, the stochastic models we face and we still have to make decision?
In fact this is the situation we meet everyday, all the time, in any circumstances;
In enginnering, scientific research activity, humain activities, economic,
business (finance)
The more data we have the less we can be sure about the certainty of our probability and statistic models

This problem closely links In this talk we provide a useful PDE method to treat continuous time probability uncertainty
For fix our idea we concretely treat the following situation:
We can continuously observe a d-dim continuous process $\omega(t)$, $t \in [0, T]$, To study a