Floer theory and metrics in symplectic and contact topology

Egor Shelukhin, IAS, Princeton

September 27, 2016
Changing geometry/topology requires energy

\[\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi|_{C^0} = 1 \]
Changing geometry/topology requires energy

\[\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi|_{C^0} = 1 \]

Otherwise \(|f - g \circ \psi|_{C^0} = 1 - \epsilon,\)

\(\{f < 1 + \epsilon\} \subset \{g \circ \psi < 2\} \subset \{f < 3 - \epsilon\}\)
Changing geometry/topology requires energy

\[V^t(f) = H_0(\{ f < t \}, \mathbb{K}), \quad V^t(g) = V^t(g \circ \psi) \]
Changing geometry/topology requires energy

\[V^t(f) = H_0(\{ f < t \}, \mathbb{K}), \quad V^t(g) = V^t(g \circ \psi) \]

\[V^{1+\epsilon}(f) \rightarrow V^2(g) \rightarrow V^{3-\epsilon}(f) \]
Changing geometry/topology requires energy

\[V^t(f) = H_0(\{ f < t \}, \mathbb{K}), \quad V^t(g) = V^t(g \circ \psi) \]

\[V^{1+\epsilon}(f) \rightarrow V^2(g) \rightarrow V^{3-\epsilon}(f) \]

composition iso:

\[2 = \dim V^{1+\epsilon}(f) \leq \dim V^2(g) = 1. \]
Changing geometry/topology requires energy

\[
\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi|_{C^0} = 1
\]
Changing geometry/topology requires energy

\[\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi|_{C^0} = 1 \]

Not so easy. Dimensions are the same!
Hamiltonian diffeomorphisms

- (M, ω) - closed symplectic manifold.

- $\text{Ham} : = \text{Ham}(M, \omega)$ - the group of Hamiltonian diffeomorphisms:

 endpoints of paths $\{\phi^t_H\}_{t=0}^1 \quad \phi^0_H = id$
Hamiltonian diffeomorphisms

- \((M, \omega)\) - closed symplectic manifold.
- \(\text{Ham} := \text{Ham}(M, \omega)\) - the group of Hamiltonian diffeomorphisms:

 endpoints of paths \(\{\phi^t_H\}_{t=0}^1\) \(\phi^0_H = \text{id}\)

 generated by vector field \(X^t_H\)

 \(\iota_{X^t_H} \omega = -d(H(t, -))\) \(H \in C^\infty([0, 1] \times M, \mathbb{R})\)
Hamiltonian diffeomorphisms

- (M, ω) - closed symplectic manifold.
- $\text{Ham} := \text{Ham}(M, \omega)$ - the group of Hamiltonian diffeomorphisms:

 endpoints of paths $\{\phi^t_H\}_{t=0}^1 \quad \phi^0_H = id$

 generated by vector field X^t_H

 $\iota_{X^t_H}\omega = -d(H(t, -)) \quad H \in C^\infty([0, 1] \times M, \mathbb{R})$

- universal cover $\widehat{\text{Ham}} = \{(\{\phi^t_H\}_{t=0}^1 | H \ldots)/ \sim\}, \sim$ is homotopy with fixed endpoints.
Metrics on groups

G - group.

A metric d on G - right-invariant: $d(ag, bg) = d(a, b)$ for all $a, b, g \in G$.

d is bi-invariant: $d(ga, gb) = d(a, b)$ for all $a, b, g \in G$.
Metrics on groups

G - group.

A metric d on G - right-invariant: $d(ag, bg) = d(a, b)$ for all $a, b, g \in G$.

d is bi-invariant: $d(ga, gb) = d(a, b)$ for all $a, b, g \in G$.
Hofer norm

Definition

\[d_{\text{Hofer}}(f, g) = \inf_{H: \phi_H^1 = gf^{-1}} \int_0^1 (\max_M H(t, -) - \min_M H(t, -)) \, dt. \]
Hofer norm

Definition

\[d_{\text{Hofer}}(f, g) = \inf_{H: \phi_H^1 = gf^{-1}} \int_0^1 \left(\max_M H(t, -) - \min_M H(t, -) \right) dt. \]

Theorem

(Hofer, Viterbo, Polterovich, Lalonde-McDuff)

\(d_{\text{Hofer}} \) is a bi-invariant metric on \(\text{Ham} \).
Hofer norm

Definition

\[d_{\text{Hofer}}(f, g) = \inf_{H: \phi_H^1 = g f^{-1}} \int_0^1 (\max_M H(t, -) - \min_M H(t, -)) \, dt. \]

Theorem

(Hofer, Viterbo, Polterovich, Lalonde-McDuff)

\(d_{\text{Hofer}} \) is a bi-invariant metric on Ham.

Remark

▶ With normalization \(\int_M H(t, -) \omega^n = 0 \), can take
\[|H(t, -)|_{L^\infty(M)} = \max_M |H(t, -)| \rightsquigarrow \) equivalent metric
(cf. Bukhovsky-Ostrover).

▶ In contrast: false for \(|H(t, -)|_{L^p} \) (Eliashberg-Polt.), no
fine conj. invt. norms on \(\text{Diff}_0, \text{Cont}_0 \)
(Burago-Ivanov-Polt., Fraser-Polt.-Rosen).
"Morse theory for action functional $A_H : \mathcal{LM} \to \mathbb{R}$, for H - Hamiltonian”

$A_H(z) = \int_0^1 H(t, z(t)) \, dt - \int_z \omega$
Filtered Floer homology

"Morse theory for action functional $A_H : \mathcal{LM} \to \mathbb{R}$, for H - Hamiltonian"

$$A_H(z) = \int_0^1 H(t, z(t)) \, dt - \int_z \omega$$

$\text{Crit}(A_H) = 1$-periodic orbits of $\{\phi^t_H\}$.
Filtered Floer homology

"Morse theory for action functional $A_H : \mathcal{LM} \to \mathbb{R}$, for H - Hamiltonian"

$A_H(z) = \int_0^1 H(t, z(t)) \, dt - \int_z \omega$

$\text{Crit}(A_H) = 1$-periodic orbits of $\{\phi^t_H\}$.

For f - Morse on closed mfld,

$V^a(f)_* = H_*(\{f < a\})$.
Filtered Floer homology

"Morse theory for action functional $A_H : \mathcal{LM} \to \mathbb{R}$, for H - Hamiltonian"

$A_H(z) = \int_0^1 H(t, z(t)) \, dt - \int_z \omega$

$\text{Crit}(A_H) = 1$-periodic orbits of $\{\phi_t^H\}$.

For f - Morse on closed mfld,

$V^a(f)_* = H_*(\{f < a\}).$

Inclusion induces maps $\pi^{a,b} : V^a \to V^b$, for $a \leq b$

Triangles for $a \leq b \leq c$ commute
Filtered Floer homology

"Morse theory for action functional \(A_H : \mathcal{L}M \to \mathbb{R}, \) for \(H \) - Hamiltonian"

\[
A_H(z) = \int_0^1 H(t, z(t)) \, dt - \int_z \omega
\]

\(\text{Crit}(A_H) = 1\)-periodic orbits of \(\{ \phi^t_H \} \).

For \(f \) - Morse on closed mfld,

\[
V^a(f)_* = H_*(\{ f < a \}).
\]

Inclusion induces maps \(\pi^{a,b} : V^a \to V^b \), for \(a \leq b \)

Triangles for \(a \leq b \leq c \) commute

\(\rightsquigarrow \text{(pointwise fin. dim. constructible) persistence module} \)
Similarly, assuming $[\omega]|_{tori} = 0$, $[c_1]|_{tori} = 0$ (otherwise need to work with coeff. in ”Novikov ring”),

H with $\text{graph}(\phi^1_H) \cap \Delta$,
Similarly, assuming $[\omega]|_{tori} = 0$, $[c_1]|_{tori} = 0$ (otherwise need to work with coeff. in "Novikov ring"),

H with $\text{graph}(\phi^1_H) \cap \Delta$, $\rightsquigarrow V^a(H)_* = "HF^{(-\infty,a)}(H)_*"$
Similarly, assuming $[\omega]|_{\text{tori}} = 0$, $[c_1]|_{\text{tori}} = 0$ (otherwise need to work with coeff. in "Novikov ring"),

\[H \text{ with } \text{graph}(\phi^1_H) \cap \Delta, \rightsquigarrow V^a(H)_\ast = "HF(-\infty,a)(H)_\ast" \]

Can show: dep. only on ϕ^1_H (more generally on $[\{\phi^t_H\}]$)

$\rightsquigarrow V^a(\phi)_\ast$ persistence module.
Persistence

\[I = (a, b] \text{ or } (a, \infty) - \text{ interval}; \]
Persistence

\[I = (a, b] \text{ or } (a, \infty) \text{ - interval; } \]

Interval p-mod: \(Q(I) \) with \(Q(I)^a = \mathbb{K} \) iff \(a \in I \), otherwise 0. \((\pi^{a,b} \text{ iso whenever can}) \)
$I = (a, b]$ or (a, ∞) - interval;

Interval p-mod: $Q(I)$ with $Q(I)^a = \mathbb{K}$ iff $a \in I$, otherwise 0. ($\pi^{a, b}$ iso whenever can)

Theorem
(Carlsson-Zomorodian, Crawley-Boevey) Every p.-mod. as above is isomorphic to a finite direct sum of interval p-modules.
Persistence

\(I = (a, b] \) or \((a, \infty)\) - interval;

Interval p-mod: \(Q(I) \) with \(Q(I)^a = \mathbb{K} \) iff \(a \in I \), otherwise 0. \((\pi^{a,b} \text{ iso whenever can})\)

Theorem
(Carlsson-Zomorodian, Crawley-Boevey) Every p.-mod. as above is isomorphic to a finite direct sum of interval p-modules.

The multiset of intervals is canonical \(\rightsquigarrow \) ”barcode”.
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f), V(g)$ are related by "moving endpts of bars $\leq C$".

Similar conclusion of $V(\varphi), V(\psi)$ for $d_{Hofer}(\varphi, \psi) \leq C$.

⇒ "length of maximal bar" (= boundary depth - Usher), "max starting pt inf. bar" (= fund. class spectral invt - Viterbo, Oh, Schwarz,...) etc. are Lipschitz in Hofer's metric.
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow

If \|f - g\|_{C^0} \leq C

⇒

"length of maximal bar" (= boundary depth - Usher),
"max starting pt inf. bar" (= fund. class spectral invt - Viterbo, Oh, Schwarz,...), etc. are Lipschitz in Hofer's metric.
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f)$, $V(g)$ are related by "moving endpts of bars $\leq C$".
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If \(|f - g|_{C^0} \leq C\) then barcodes of \(V(f), V(g)\) are related by "moving endpts of bars \(\leq C\)."

Similar conclusion of \(V(\phi), V(\psi)\) for \(d_{Hofer}(\phi, \psi) \leq C\).
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f), V(g)$ are related by "moving endpts of bars $\leq C$".

Similar conclusion of $V(\phi), V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

⇒ "length of maximal bar"
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \(\Rightarrow\)

If \(|f - g|_{C^0} \leq C\) then barcodes of \(V(f), V(g)\) are related by "moving endpts of bars \(\leq C\)".

Similar conclusion of \(V(\phi), V(\psi)\) for \(d_{\text{Hofer}}(\phi, \psi) \leq C\).

\(\Rightarrow\) "length of maximal bar" (\(=\) boundary depth - Usher),
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f), V(g)$ are related by \"moving endpts of bars ≤ C\".

Similar conclusion of $V(\phi), V(\psi)$ for $d_{Hofer}(\phi, \psi) \leq C$.

⇒ \"length of maximal bar\" (= boundary depth - Usher), \"max starting pt inf. bar\"
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) \Rightarrow

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f), V(g)$ are related by ”moving endpts of bars $\leq C$”.

Similar conclusion of $V(\phi), V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

\Rightarrow ”length of maximal bar” (= boundary depth - Usher),”max starting pt inf. bar” (= fund. class spectral invt - Viterbo, Oh, Schwarz,...), etc.
Isometry theorem

(Edelsbrunner - Harer - Cohen-Steiner,...,Bauer-Lesnick) ⇒

If $|f - g|_{C^0} \leq C$ then barcodes of $V(f)$, $V(g)$ are related by ”moving endpts of bars $\leq C$”.

Similar conclusion of $V(\phi)$, $V(\psi)$ for $d_{\text{Hofer}}(\phi, \psi) \leq C$.

⇒ ”length of maximal bar” (= boundary depth - Usher),”max starting pt inf. bar” (= fund. class spectral invt - Viterbo, Oh, Schwarz,...), etc. are Lipschitz in Hofer’s metric.
\[\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi| = 1 \]

since

\[d(\mathcal{B}(V(f)), \mathcal{B}(V(g))) \geq 1 \]
f and g: one answer

\[\inf_{\psi \in \text{Diff}_0(S^1)} |f - g \circ \psi| = 1 \]

since

\[d(\mathcal{B}(V(f)), \mathcal{B}(V(g))) \geq 1 \]
Far from a power

Theorem
(Polterovich-S., 2015) In $G = \text{Ham}(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\text{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.
Far from a power

Theorem

(Polterovich-S., 2015) In $G = \text{Ham}(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\text{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.

Question

Same for $\text{Ham}(S^2)$? Even for $\text{im}(\exp)$?
Far from a power

Theorem
(Polterovich-S., 2015) In $G = \text{Ham}(\Sigma_4 \times N)$ exist ϕ_j s.t.

$$d_{\text{Hofer}}(\phi_j, \{\theta^2 | \theta \in G\}) \xrightarrow{j \to \infty} \infty,$$

N symp. aspherical or a point.

Question
Same for $\text{Ham}(S^2)$? Even for $\text{im}(\exp)$?

Theorem
(Polterovich-S.-Stojisavljevic, in progress) Same for $G = \text{Ham}(\Sigma_4 \times \mathbb{C}P^n)$.

Uses action of quantum homology on Floer persistence.
(Zhang - same for any M, where power p-large)
Lagrangian submanifolds

\(L \subset M \) closed Lagrangian submanifold,
\(\dim L = \frac{1}{2} \dim M, \omega|_L = 0. \) Assume \(\pi_2(M, L) = 0. \) Then
\(HF(L, L) \cong H(L). \)

If \(\phi \in Ham, \phi L \neq L, \) then \(d_{\text{Hofer}}(\phi, 1) > 0. \) (Chekanov, Barraud-Cornea, Charette,...)

Proof:

- barcodes of \(HF(L, \phi L)^t, HF(L, L)^t \) are at distance at most \(d_{\text{Hofer}}(\phi, 1) \). Hence \(\dim H(L) \) infinite bars which start below \(d_{\text{Hofer}}(\phi, 1) \)
- so are \(pt \ast HF(L, \phi L)^t, pt \ast HF(L, L)^t \), hence one infinite bar that starts above \(-d_{\text{Hofer}}(\phi, 1) \).
- hence exist \(x, y \in CF(L, \phi L) \) with \(pt \ast x = y \) and
\(A(x) - A(y) \leq 2d_{\text{Hofer}}(\phi, 1). \)
A bit of Gromov compactness shows that via any point $p \in L \setminus \phi L$ and any J, there is a J-holomorphic strip with $\text{Area} \leq 2d_{\text{Hofer}}(\phi, 1)$.

Choosing good J, and standard monotonicity argument: $\text{Area} \geq \pi r^2/2$, with $B(r)$ standard symplectic ball of radius r, embedded (only) with real part on L, and disjoint from L'.

$d_{\text{Hofer}}(\phi, 1) \geq \pi r^2/4$

(Cornea-S., 2015) Generalize to certain Lagragian cobordisms
(Biran-Cornea-S., in progress) Generalize to multi-ended cobordisms, and isomorphisms in the Fukaya category.
Contactomorphisms

Eliashberg’s dichotomy, 2014:

"Holomorphic curves or nothing" or: something ⇒ holomorphic curves!

pf of some rigidity statement ⇝ pf with hol. curves ⇝ new methods, new results.
Contactomorphisms

Eliashberg’s dichotomy, 2014:

”Holomorphic curves or nothing”
Contactomorphisms

Eliashberg’s dichotomy, 2014:

”Holomorphic curves or nothing”

or:

something ⇒ holomorphic curves!
Contactomorphisms

Eliashberg’s dichotomy, 2014:

”Holomorphic curves or nothing”

or:

something \Rightarrow holomorphic curves!

pf of some rigidity statement \leadsto pf with hol. curves \leadsto new methods, new results.
Contactomorphisms

Theorem

(Givental, 1990, using fin.-dim. methods):
\[\exists \nu_0 : \widehat{\text{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R} \text{ unbounded quasi-morphism} \]
\[\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty. \]
Contactomorphisms

Theorem
(Givental, 1990, using fin.-dim. methods):
\[\exists \nu_0 : \widetilde{\text{Cont}}_0(\mathbb{RP}^{2n+1}, \xi_{st}) \to \mathbb{R} \text{ unbounded quasi-morphism} \]
\[\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty. \]

Theorem
(Entov-Polterovich, 2003, using Floer theory): same for \[\mu : \widetilde{\text{Ham}}(\mathbb{CP}^n, \omega_{st}) \to \mathbb{R}. \]
Contactomorphisms

Theorem

(Givental, 1990, using fin.-dim. methods):

\[\exists \nu_0 : \widetilde{\text{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R} \text{ unbounded quasi-morphism} \]

\[\sup_{x,y} |\nu_0(xy) - \nu_0(x) - \nu_0(y)| < \infty. \]

Theorem

(Entov-Polterovich, 2003, using Floer theory): same for

\[\mu : \widetilde{\text{Ham}}(\mathbb{C}P^n, \omega_{st}) \to \mathbb{R}. \]

Question

Are these two related?
Answer: no idea, but

Theorem

(Ben-Simon, 2006) $i^* \nu_0$ has the Calabi property, like μ, where $i : \widehat{\text{Ham}}(\mathbb{C}P^n) \to \widehat{\text{Cont}}_0(\mathbb{R}P^{2n+1})$ natural inclusion.

Theorem

(Albers-S.-Zapolsky, in progress, using Floer theory):

$\exists \nu : \widehat{\text{Cont}}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}$ unbounded quasi-morphism, for which

$$i^* \nu = \mu.$$
Answer: no idea, but

Theorem
(Ben-Simon, 2006) $i^* \nu_0$ has the Calabi property, like μ, where $i : \widetilde{\text{Ham}}(\mathbb{C}P^n) \to \widetilde{\text{Cont}}_0(\mathbb{R}P^{2n+1})$ natural inclusion.

Theorem
(Albers-S.-Zapolsky, in progress, using Floer theory): \(\exists \nu : \text{Cont}_0(\mathbb{R}P^{2n+1}, \xi_{st}) \to \mathbb{R}\) unbounded quasi-morphism, for which
\[i^* \nu = \mu. \]

Idea: use package of filtered Lagragian Floer homology for $\mathbb{R}P^{2n+1} \hookrightarrow S(\mathbb{R}P^{2n+1}) \times (\mathbb{C}P^n)^-$, Lagrangian correspondence.
Obstacle: concave end. Upshot: new results e.g. on topology of Cont.
Thank you!