Energy approach to Coulomb and log gases

Sylvia SERFATY

Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Courant Institute, New York University

IAS workshop, April 3, 2014
The classical Coulomb gas Hamiltonian

\[H_n(x_1, \ldots, x_n) = \sum_{i \neq j} w(x_i - x_j) + n \sum_{i=1}^{n} V(x_i) \quad x_i \in \mathbb{R}^d \]

\[w(x) = \begin{cases}
\frac{1}{|x|^{d-2}} & \text{if } d \geq 3 \\
- \log |x| & \text{if } d = 1, 2
\end{cases} \]

\[-\Delta w = c_d \delta_0 \quad \text{if } d \geq 2 \]

\(V \) confining potential, sufficiently smooth and growing at infinity

With temperature: Gibbs measure

\[d\mathbb{P}_{n,\beta}(x_1, \ldots, x_n) = \frac{1}{Z_{n,\beta}} e^{-\frac{\beta}{2} H_n(x_1, \ldots, x_n)} dx_1 \ldots dx_n \quad x_i \in \mathbb{R}^d \]

\(Z_{n,\beta} \) partition function

Limit \(n \to \infty \)?
The classical Coulomb gas Hamiltonian

\[H_n(x_1, \ldots, x_n) = \sum_{i \neq j} w(x_i - x_j) + n \sum_{i=1}^{n} V(x_i) \quad x_i \in \mathbb{R}^d \]

\[w(x) = \frac{1}{|x|^{d-2}} \text{ if } d \geq 3 = -\log|x| \text{ if } d = 1, 2 \]

\[-\Delta w = c_d \delta_0 \text{ if } d \geq 2 \]

\(V \) confining potential, sufficiently smooth and growing at infinity

With temperature: Gibbs measure

\[dP_{n,\beta}(x_1, \ldots, x_n) = \frac{1}{Z_{n,\beta}} e^{-\frac{\beta}{2} H_n(x_1, \ldots, x_n)} dx_1 \ldots dx_n \quad x_i \in \mathbb{R}^d \]

\(Z_{n,\beta} \) partition function

Limit \(n \to \infty \)?
Motivations

- statistical mechanics
- connection to random matrices (first noticed by Wigner, Dyson)
 \(d = 1 \) Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb
 \(d = 1 \) log gas or \(d \geq 2 \) Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Frohlich-Spencer '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13, Valko-Virag '09, Bourgade-Erdős-Yau '12, Scherbina '14, Beckerman-Figalli-Guionnet '14...
- weighted Fekete points, Fekete points on spheres
 Rakhmanov-Saff-Zhou

\[
\min_{x_1, \ldots, x_n \in S^d} \left(- \sum_{i \neq j} \log |x_i - x_j| \right)
\]

- Riesz \(s \)-energy

\[
\min_{x_1 \ldots x_n \in S^d} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}
\]

cf. Smale’s 7th problem originating in computational complexity
Motivations

- statistical mechanics
- connection to random matrices (first noticed by Wigner, Dyson)

 \(d = 1 \) Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb

 \(d = 1 \) log gas or \(d \geq 2 \) Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Frohlich-Spencer '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13, Valko-Virag '09, Bourgade-Erdős-Yau '12, Scherbina '14, Beckerman-Figalli-Guionnet '14...

- weighted Fekete points, Fekete points on spheres

 Rakhmanov-Saff-Zhou

 \[
 \min_{x_1, \ldots, x_n \in S^d} - \sum_{i \neq j} \log |x_i - x_j|
 \]

- Riesz \(s \)-energy

 \[
 \min_{x_1 \ldots x_n \in S^d} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}
 \]

 cf. Smale's 7th problem originating in computational complexity
Motivations

▶ statistical mechanics

▶ connection to random matrices (first noticed by Wigner, Dyson)
\(d = 1 \) Coulomb kernel: completely solvable Lenard, Aizenman-Martin, Brascamp-Lieb
\(d = 1 \) log gas or \(d \geq 2 \) Coulomb gas Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Alastuey-Jancovici '81, Frohlich-Spencer '81, Jancovici-Lebowitz-Manificat '93, Kiessling '93, Kiessling-Spohn '99, Chafai-Gozlan-Zitt '13, Valko-Virag '09, Bourgade-Erdős-Yau '12, Scherbina '14, Beckerman-Figalli-Guionnet '14...

▶ weighted Fekete points, Fekete points on spheres
Rakhmanov-Saff-Zhou
\[
\min_{x_1, \ldots, x_n \in S^d} \sum_{i \neq j} \log |x_i - x_j|
\]

▶ Riesz \(s \)-energy
\[
\min_{x_1 \ldots x_n \in S^d} \sum_{i \neq j} \frac{1}{|x_i - x_j|^s}
\]

cf. Smale’s 7th problem originating in computational complexity
The mean field limit

- For \((x_1, \ldots, x_n)\) minimizing \(H_n\), one can prove
 \[
 \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} \delta_{x_i} = \mu_0 \quad \lim_{n \to \infty} \frac{\min H_n}{n^2} = \mathcal{E}(\mu_0)
 \]

 where \(\mu_0\) is the unique minimizer of
 \[
 \mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).
 \]

 among probability measures.

 \(\mathcal{E}\) has a unique minimizer \(\mu_0\) among probability measures, called the *equilibrium measure* (Frostman 50's potential theory)

- Denote \(\Sigma = \text{Supp}(\mu_0)\). We assume \(\Sigma\) is compact with \(C^1\) boundary and if \(d \geq 2\) that \(\mu_0\) has a density bounded above and below on \(\Sigma\) with is \(C^1\) in \(\Sigma\).

- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, Ben Arous-Guionnet, Chafai-Gozlan-Zitt)

- We look at next order terms by expanding \(\sum_{i=1}^{n} \delta_{x_i}\) as \(n \mu_0 + (\sum_{i=1}^{n} \delta_{x_i} - n \mu_0)\) and inserting into \(H_n\).
The mean field limit

- For \((x_1, \ldots, x_n)\) minimizing \(H_n\), one can prove

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \delta_{x_i}}{n} = \mu_0 \quad \text{and} \quad \lim_{n \to \infty} \frac{\min H_n}{n^2} = \mathcal{E}(\mu_0)
\]

where \(\mu_0\) is the unique minimizer of

\[
\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).
\]

among probability measures.

\(\mathcal{E}\) has a unique minimizer \(\mu_0\) among probability measures, called the equilibrium measure (Frostman 50’s potential theory)

- Denote \(\Sigma = \text{Supp}(\mu_0)\). We assume \(\Sigma\) is compact with \(C^1\) boundary and if \(d \geq 2\) that \(\mu_0\) has a density bounded above and below on \(\Sigma\) with is \(C^1\) in \(\Sigma\).

- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, Ben Arous-Guionnet, Chafai-Gozlan-Zitt)

- We look at next order terms by expanding \(\sum_{i=1}^{n} \delta_{x_i}\) as \(n\mu_0 + (\sum_{i=1}^{n} \delta_{x_i} - n\mu_0)\) and inserting into \(H_n\).
The mean field limit

For \((x_1, \ldots, x_n)\) minimizing \(H_n\), one can prove

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \delta_{x_i}}{n} = \mu_0 \quad \lim_{n \to \infty} \frac{\min H_n}{n^2} = \mathcal{E}(\mu_0)
\]

where \(\mu_0\) is the unique minimizer of

\[
\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x-y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).
\]

among probability measures.

\(\mathcal{E}\) has a unique minimizer \(\mu_0\) among probability measures, called the \textit{equilibrium measure} (Frostman 50's potential theory)

Denote \(\Sigma = \text{Supp}(\mu_0)\). We assume \(\Sigma\) is compact with \(C^1\) boundary and if \(d \geq 2\) that \(\mu_0\) has a density bounded above and below on \(\Sigma\) with is \(C^1\) in \(\Sigma\).

With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, Ben Arous-Guionnet, Chafai-Gozlan-Zitt)

We look at next order terms by expanding \(\sum_{i=1}^{n} \delta_{x_i}\) as \(n\mu_0 + (\sum_{i=1}^{n} \delta_{x_i} - n\mu_0)\) and inserting into \(H_n\).
The mean field limit

- For \((x_1, \ldots, x_n)\) minimizing \(H_n\), one can prove

\[
\lim_{n \to \infty} \frac{\sum_{i=1}^{n} \delta_{x_i}}{n} = \mu_0 \quad \lim_{n \to \infty} \frac{\min H_n}{n^2} = \mathcal{E}(\mu_0)
\]

where \(\mu_0\) is the unique minimizer of

\[
\mathcal{E}(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).
\]

among probability measures.

\(\mathcal{E}\) has a unique minimizer \(\mu_0\) among probability measures, called the equilibrium measure (Frostman 50’s potential theory)

- Denote \(\Sigma = \text{Supp}(\mu_0)\). We assume \(\Sigma\) is compact with \(C^1\) boundary and if \(d \geq 2\) that \(\mu_0\) has a density bounded above and below on \(\Sigma\) with \(C^1\) in \(\Sigma\).

- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, Ben Arous-Guionnet, Chafai-Gozlan-Zitt)

- We look at next order terms by expanding \(\sum_{i=1}^{n} \delta_{x_i}\) as \(n\mu_0 + (\sum_{i=1}^{n} \delta_{x_i} - n\mu_0)\) and inserting into \(H_n\).
The mean field limit

- For \((x_1, \ldots, x_n)\) minimizing \(H_n\), one can prove

 \[
 \lim_{n \to \infty} \frac{\sum_{i=1}^{n} \delta_{x_i}}{n} = \mu_0 \quad \lim_{n \to \infty} \frac{\min H_n}{n^2} = E(\mu_0)
 \]

 where \(\mu_0\) is the unique minimizer of

 \[
 E(\mu) = \int_{\mathbb{R}^d \times \mathbb{R}^d} w(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).
 \]

 among probability measures.

 \(E\) has a unique minimizer \(\mu_0\) among probability measures, called the equilibrium measure (Frostman 50’s potential theory)

- Denote \(\Sigma = \text{Supp}(\mu_0)\). We assume \(\Sigma\) is compact with \(C^1\) boundary and if \(d \geq 2\) that \(\mu_0\) has a density bounded above and below on \(\Sigma\) with \(\mu_0\) is \(C^1\) in \(\Sigma\).

- With temperature, a corresponding LDP can be proven (Petz-Hiai, Ben Arous-Zeitouni, Ben Arous-Guionnet, Chafai-Gozlan-Zitt)

- We look at next order terms by expanding \(\sum_{i=1}^{n} \delta_{x_i}\) as \(n\mu_0 + (\sum_{i=1}^{n} \delta_{x_i} - n\mu_0)\) and inserting into \(H_n\).
Approach

- In Sandier-S, we developed an essentially 2D approach to the problem, inspired from our work on vortices in Ginzburg-Landau. Relies on “ball construction methods" introduced by Jerrard, Sandier in the context of GL. Works for $-\log$ in $d = 1, 2$.

- In Rougerie-S we developed an approach valid for any $d \geq 2$, based instead on Onsager’s lemma (smearing out the charges). (Previous related work Rougerie-S-Yngvason)
Next order expansion of $\min H_n$ and $Z_{n, \beta}$

Theorem (ground state energy, Rougerie-S $d \geq 2$, Sandier-S $d = 1, 2$)

Under suitable assumptions on V, as $n \to \infty$ we have

$$
\min H_n = \begin{cases}
 n^2 E(\mu_0) + n^{2-2/d} \left(\frac{\alpha_d}{c_d} \int \mu_0^{2-2/d}(x) dx + o(1) \right) & \text{if } d \geq 3 \\
 n^2 E(\mu_0) - \frac{n}{2} \log n + n \left(\frac{\alpha_2}{2\pi} - \frac{1}{2} \int \mu_0(x) \log \mu_0(x) dx + o(1) \right) & \text{if } d = 2 \\
 n^2 E(\mu_0) - n \log n + n \left(\frac{\alpha_1}{2\pi} - \int \mu_0(x) \log \mu_0(x) dx + o(1) \right) & \text{if } d = 1
\end{cases}
$$

where $\alpha_d = \min \mathcal{W}$ depends only on d (see later).
Theorem (ctd, free energy expansion)

Assume there exists $\beta_1 > 0$ such that

\[
\begin{aligned}
\int e^{-\beta_1 V(x)/2} \, dx &< \infty \text{ when } d \geq 3 \\
\int e^{-\beta_1 \left(\frac{V(x)}{2} - \log |x| \right)} \, dx &< \infty \text{ when } d = 1, 2.
\end{aligned}
\]

If $d \geq 3$ and $\beta \geq cn^{2/d-1}$ or $d = 1, 2$ and $\beta \geq c(\log n)^{-1}$

\[
\left| -\frac{2}{\beta} \log Z_{n,\beta} - \min H_n \right| \leq o(n^{2-2/d}) + C \frac{n}{\beta}.
\]

\Rightarrow transition regime $\beta \gg n^{2/d-1}$ if $d \geq 3$, $\beta \gg 1$ if $d = 1, 2$
Theorem (ctd, free energy expansion)

Assume there exists $\beta_1 > 0$ such that
\[
\begin{aligned}
\int e^{-\beta_1 V(x)/2} \, dx &< \infty \text{ when } d \geq 3, \\
\int e^{-\beta_1 \left(\frac{V(x)}{2} - \log |x| \right)} \, dx &< \infty \text{ when } d = 1, 2.
\end{aligned}
\]

If $d \geq 3$ and $\beta \geq cn^{2/d - 1}$ or $d = 1, 2$ and $\beta \geq c(\log n)^{-1}$

\[
\left| \frac{-2}{\beta} \log Z_{n,\beta} - \min H_n \right| \leq o(n^{2-2/d}) + C \frac{n}{\beta}.
\]

\Rightarrow transition regime $\beta \gg n^{2/d - 1}$ if $d \geq 3$, $\beta \gg 1$ if $d = 1, 2$
After blow up the points should interact according to a Coulomb interaction, but screened by a fixed background charge: jellium
Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} - n\mu_0$, and blow up.
- Set $\mu'_0(x') = \mu_0(x') n^{-1/d}$, blown-up background density and for x_1, \ldots, x_n, set $x'_i = n^{1/d} x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta_{x_i'} - \mu'_0 \right) = w * \left(\sum_{i=1}^{n} \delta_{x_i'} - \mu'_0 \right)$$

- For any $x, \eta > 0$, let $\delta_{x}^{(\eta)} = \frac{1}{|B(0,\eta)|} \mathbb{1}_{B(x,\eta)}$, "smeared out" Dirac mass at scale η
- **Newton's theorem**: the potentials generated by δ_0 and $\delta_0^{(\eta)}$ (i.e. $w * \delta_0 = w$ and $w * \delta_0^{(\eta)}$) coincide outside $B(0, \eta)$, and $w \geq w * \delta_0^{(\eta)}$. Then

$$h_{n,\eta}(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta_{x_i'}^{(\eta)} - \mu'_0 \right) = w * \left(\cdots \right)$$

can be defined unambiguously and coincides with h_n outside $\cup_i B(x'_i, \eta)$.
Some notation

- Start with the potential generated by \(\sum_{i=1}^{n} \delta_{x_i} - n\mu_0 \), and blow up.

- Set \(\mu'_0(x') = \mu_0(x'n^{-1/d}) \), blown-up background density and for \(x_1, \ldots, x_n \), set \(x'_i = n^{1/d}x_i \) and

\[
h_n(x') = -c_d\Delta^{-1}\left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0\right) = w \ast \left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0\right)
\]

- For any \(x, \eta > 0 \), let \(\delta^{(\eta)}_x = \frac{1}{|B(0,\eta)|}1_{B(x,\eta)} \), "smeared out" Dirac mass at scale \(\eta \)

- **Newton's theorem**: the potentials generated by \(\delta_0 \) and \(\delta^{(\eta)}_0 \) (i.e. \(w \ast \delta_0 = w \) and \(w \ast \delta^{(\eta)}_0 \)) coincide outside \(B(0,\eta) \), and \(w \geq w \ast \delta^{(\eta)}_0 \). Then

\[
h_{n,\eta}(x') = -c_d\Delta^{-1}\left(\sum_{i=1}^{n} \delta^{(\eta)}_{x'_i} - \mu'_0\right) = w \ast \left(\cdots \right)
\]

can be defined unambiguously and coincides with \(h_n \) outside \(\cup_i B(x'_i, \eta) \).
Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} - n\mu_0$, and blow up.
- Set $\mu'_0(x') = \mu_0(x'^{-1/d})$, blown-up background density and for x_1, \ldots, x_n, set $x'_i = n^{1/d}x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0 \right) = w * \left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0 \right)$$

- For any $x, \eta > 0$, let $\delta^{(\eta)}_x = \frac{1}{|B(0, \eta)|} B(x, \eta)$, "smeared out" Dirac mass at scale η

- **Newton's theorem:** the potentials generated by δ_0 and $\delta^{(\eta)}_0$ (i.e. $w * \delta_0 = w$ and $w * \delta^{(\eta)}_0$) coincide outside $B(0, \eta)$, and $w \geq w * \delta^{(\eta)}_0$. Then

$$h_{n, \eta}(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta^{(\eta)}_{x'_i} - \mu'_0 \right) = w * \left(\ldots \right)$$

can be defined unambiguously and coincides with h_n outside $\bigcup_i B(x'_i, \eta)$.
Some notation

- Start with the potential generated by $\sum_{i=1}^{n} \delta_{x_i} - n\mu_0$, and blow up.
- Set $\mu_0'(x') = \mu_0(x' n^{-1/d})$, blown-up background density and for x_1, \ldots, x_n, set $x'_i = n^{1/d} x_i$ and

$$h_n(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0 \right) = w \ast \left(\sum_{i=1}^{n} \delta_{x'_i} - \mu'_0 \right)$$

- For any $x, \eta > 0$, let $\delta_x^{(\eta)} = \frac{1}{|B(0, \eta)|} \mathbf{1}_{B(x, \eta)}$, “smeared out” Dirac mass at scale η

- **Newton’s theorem:** the potentials generated by δ_0 and $\delta_0^{(\eta)}$ (i.e. $w \ast \delta_0 = w$ and $w \ast \delta_0^{(\eta)}$) coincide outside $B(0, \eta)$, and $w \geq w \ast \delta_0^{(\eta)}$. Then

$$h_{n, \eta}(x') = -c_d \Delta^{-1} \left(\sum_{i=1}^{n} \delta_{x'_i}^{(\eta)} - \mu'_0 \right) = w \ast \left(\cdots \right)$$

can be defined unambiguously and coincides with h_n outside $\cup_i B(x'_i, \eta)$.
Splitting formula

As in Onsager's lemma (used in “stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton’s theorem we have

\[\sum_{i \neq j} w(x_i - x_j) \geq \sum_{i \neq j} \int \int w(x - y) \delta^{(\ell)}_{x_i}(x) \delta^{(\ell)}_{x_j}(y) \]

\[= \int \int w(x - y) \left(\sum_{i=1}^{n} \delta^{(\ell)}_{x_i}(x) \right) \left(\sum_{j=1}^{n} \delta^{(\ell)}_{x_j}(y) \right) - n \int \int w(x - y) \delta^{(\ell)}_{0}(x) \delta^{(\ell)}_{0}(y) \]

\[\text{total interaction between smeared-out charges} \]

\[\text{cst self-interaction term} = \kappa_d c_d^{-1} w(\ell) \]

Insert splitting \(\sum_{i=1}^{n} \delta^{(\ell)}_{x_i} = n \mu_0 + \left(\sum_{i=1}^{n} \delta^{(\ell)}_{x_i} - n \mu_0 \right) \) and characterization of equilibrium measure \(\mu_0 \):

\[w \ast \mu_0 + \frac{1}{2} V = \zeta + \left(\frac{1}{2} \mathcal{E}(\mu_0) + \int \int w(x - y) d\mu_0(x) d\mu_0(y) \right) \]

for some function \(\zeta \geq 0, \zeta = 0 \) in \(\Sigma \).

Then choose \(\ell = \eta n^{-1/d} \) and blow-up everything by \(n^{1/d} \).
Splitting formula

As in Onsager's lemma (used in "stability of matter", cf Lieb-Oxford, Lieb-Seiringer): from Newton's theorem we have

\[\sum_{i \neq j} w(x_i - x_j) \geq \sum_{i \neq j} \int \int w(x - y) \delta^{(\ell)}_{x_i}(x) \delta^{(\ell)}_{x_j}(y) \]

\[= \int \int w(x - y) \left(\sum_{i=1}^{n} \delta^{(\ell)}_{x_i}(x) \right) \left(\sum_{j=1}^{n} \delta^{(\ell)}_{x_j}(y) \right) - n \int \int w(x - y) \delta^{0}(x) \delta^{0}(y) \]

\[\text{total interaction between smeared-out charges} \quad \text{cst self-interaction term} = \kappa_d c_d^{-1} w(\ell) \]

Insert splitting \(\sum_{i=1}^{n} \delta^{(\ell)}_{x_i} = n \mu_0 + \left(\sum_{i=i}^{n} \delta^{(\ell)}_{x_i} - n \mu_0 \right) \) and characterization of equilibrium measure \(\mu_0 \):

\[w * \mu_0 + \frac{1}{2} V = \zeta + \left(\frac{1}{2} \mathcal{E}(\mu_0) + \int \int w(x - y) d\mu_0(x)d\mu_0(y) \right) \]

for some function \(\zeta \geq 0, \zeta = 0 \) in \(\Sigma \).

Then choose \(\ell = \eta n^{-1/d} \) and blow-up everything by \(n^{1/d} \).
Splitting formula

As in Onsager’s lemma (used in “stability of matter”, cf Lieb-Oxford, Lieb-Seiringer): from Newton’s theorem we have

\[
\sum_{i \neq j} w(x_i - x_j) \geq \sum_{i \neq j} \int \int w(x - y) \delta_{x_i}^{(\ell)}(x) \delta_{x_j}^{(\ell)}(y)
\]

\[
= \int \int w(x - y) \left(\sum_{i=1}^{n} \delta_{x_i}^{(\ell)}(x) \right) \left(\sum_{j=1}^{n} \delta_{x_j}^{(\ell)}(y) \right) - n \left(\int \int w(x - y) \delta_0^{(\ell)}(x) \delta_0^{(\ell)}(y) \right)
\]

\[
\text{total interaction between smeared-out charges}
\]

\[
\text{cst self-interaction term} = \kappa d c_d^{-1} w(\ell)
\]

Insert splitting \(\sum_{i=1}^{n} \delta_{x_i}^{(\ell)} = n \mu_0 + \left(\sum_{i=1}^{n} \delta_{x_i}^{(\ell)} - n \mu_0 \right) \) and characterization of equilibrium measure \(\mu_0 \):

\[
w \ast \mu_0 + \frac{1}{2} V = \zeta + \left(\frac{1}{2} \mathcal{E}(\mu_0) + \int \int w(x - y) d\mu_0(x) d\mu_0(y) \right)
\]

for some function \(\zeta \geq 0, \zeta = 0 \) in \(\Sigma \).

Then choose \(\ell = \eta n^{-1/d} \) and blow-up everything by \(n^{1/d} \).
Proposition (Splitting formula)

For $d \geq 2$, for any n, (x_1, \ldots, x_n), $\eta > 0$,

$$H_n(x_1, \ldots, x_n) \geq n^2 \mathcal{E}(\mu_0) - \left(\frac{n}{2} \log n\right) 1_{d=2}$$

$$+ n^{1-2/d} \left[\frac{1}{C_d} \left(\int_{\mathbb{R}^d} |\nabla h_n,\eta|^2 - n\kappa_d w(\eta) \right) - C\eta^2 \right] + 2n \sum_{i=1}^{n} \zeta(x_i).$$

The next step is to study the term in brackets and take its limit $n \to \infty$, then $\eta \to 0$.

Dimension 1 is treated in the same way after imbedding the real line into the plane and considering

$$h_n(x', y') = w * \left(\sum_{i} \delta_{(x'_i,0)} - \mu'_0(x')\delta_{y'=0} \right) \quad w = -\log |\cdot|$$

equivalent to taking Stieltjes transform
Proposition (Splitting formula)

For \(d \geq 2 \), for any \(n, (x_1, \ldots, x_n), \eta > 0 \),

\[
H_n(x_1, \ldots, x_n) \geq n^2 \mathcal{E}(\mu_0) - \left(\frac{n}{2} \log n \right) 1_{d=2} \\
+ n^{1-2/d} \left[\frac{1}{c_d} \left(\int_{\mathbb{R}^d} \left| \nabla h_n, \eta \right|^2 - n \kappa_d w(\eta) \right) - C \eta^2 \right] + 2n \sum_{i=1}^{n} \zeta(x_i) \geq 0.
\]

The next step is to study the term in brackets and take its limit \(n \to \infty \), then \(\eta \to 0 \).

Dimension 1 is treated in the same way after imbedding the real line into the plane and considering

\[
h_n(x', y') = w * \left(\sum_i \delta(x_i', 0) - \mu_0'(x') \delta_{y'=0} \right) \quad w = -\log |\cdot|
\]

equivalent to taking Stieltjes transform
The renormalized energy

Recall

\[-\Delta h_n = c_d \left(\sum_{i=1}^{n} \delta_{x_i'} - \mu'_0 \right).\]

Centering the blow-up around a point \(x_0 \in \Sigma \), in the limit \(n \to \infty \) we get solutions to

\[-\Delta h = c_d \left(\sum_{p \in \Lambda} N_p \delta_p - \mu_0(x_0) \right) \leftrightarrow -\Delta h_\eta = c_d \left(\sum_{p \in \Lambda} N_p \delta_p(\eta) - \mu_0(x_0) \right)\]

\(\Lambda \) infinite discrete set of points in \(\mathbb{R}^d \), \(N_p \in \mathbb{N}^* \).
Definition
Let $m > 0$. Call \overline{A}_m the class of ∇h such that

$$-\Delta h = c_d \left(\sum_{p \in \Lambda} N_p \delta_p - m \right)$$

with $N_p \in \mathbb{N}^*$.

Definition (Rougerie-S)
Set $K_R = [-R, R]^d$. For $\nabla h \in \overline{A}_m$ we let

$$\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} \int_{K_R} |\nabla h_\eta|^2 - \kappa_d m w(\eta) \right).$$

Alternate definition by Sandier-S in $d = 1, 2$, originating in Ginzburg-Landau theory.
Definition

Let \(m > 0 \). Call \(\overline{A}_m \) the class of \(\nabla h \) such that

\[
-\Delta h = c_d \left(\sum_{p \in \Lambda} N_p \delta_p - m \right)
\]

with \(N_p \in \mathbb{N}^* \).

Definition (Rougerie-S)

Set \(K_R = [-R, R]^d \). For \(\nabla h \in \overline{A}_m \) we let

\[
\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} \int_{K_R} |\nabla h_\eta|^2 - \kappa_d mw(\eta) \right).
\]

Alternate definition by Sandier-S in \(d = 1, 2 \), originating in Ginzburg-Landau theory.
Definition

Let $m > 0$. Call \overline{A}_m the class of ∇h such that

$$-\Delta h = c_d \left(\sum_{p \in \Lambda} N_p \delta_p - m \right)$$

with $N_p \in \mathbb{N}^*$.

Definition (Rougerie-S)

Set $K_R = [-R, R]^d$. For $\nabla h \in \overline{A}_m$ we let

$$\mathcal{W}(\nabla h) = \liminf_{\eta \to 0} \left(\limsup_{R \to \infty} \int_{K_R} |\nabla h_\eta|^2 - \kappa_d mw(\eta) \right).$$

Alternate definition by Sandier-S in $d = 1, 2$, originating in Ginzburg-Landau theory.
- If $\mathcal{W}(\nabla h) < +\infty$ then $\lim_{R \to \infty} f_{K_R}(\sum_p N_p \delta_p) = m$

- By scaling, one can reduce to \overline{A}_1, with

$$\inf_{\overline{A}_m} \mathcal{W} = m^{2-2/d} \inf_{\overline{A}_1} \mathcal{W} \quad d \geq 3$$

$$= m \left(\inf_{\overline{A}_1} \mathcal{W} - \pi \log m \right) \quad d = 2$$

- \mathcal{W} is bounded below, and has minimizers over \overline{A}_1, even sequences of periodic minimizers (with larger and larger period)
The case of the torus

Assume Λ is \mathbb{T}-periodic. Then W is $+\infty$ unless all $N_p = 1$, and can be written as a function of $\Lambda " = " \{a_1, \ldots, a_M\}$, $M = |\mathbb{T}|$.

$$W(a_1, \cdots, a_M) = \frac{c_d^2}{|\mathbb{T}|} \sum_{j \neq k} G(a_j - a_k) + \text{cst},$$

where $G = $ Green’s function of the torus ($-\Delta G = \delta_0 - 1/|\mathbb{T}|$).
Partial minimization results

Theorem (Sandier-S.)

In dimension $d = 1$ ($w = -\log$), the minimum of \mathcal{W} over all possible configurations is achieved for the lattice \mathbb{Z} ("clock distribution").

In dimension $d = 2$, the minimum of \mathcal{W} over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50’s, on the minimization of $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$.

\[\mathbb{R}^2 \]
Partial minimization results

Theorem (Sandier-S.)

In dimension $d = 1$ ($w = -\log$), the minimum of \mathcal{W} over all possible configurations is achieved for the lattice \mathbb{Z} ("clock distribution").

In dimension $d = 2$, the minimum of \mathcal{W} over perfect lattice configurations (Bravais lattices) with fixed volume is achieved uniquely, modulo rotations, by the triangular lattice.

Relies on a number theory result of Cassels, Rankin, Ennola, Diananda, 50’s, on the minimization of $\zeta(s) = \sum_{p \in \Lambda} \frac{1}{|p|^s}$.

\[
\begin{array}{c}
\mathbb{R}^2 \\
\end{array}
\]
There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Conjecture

*In dimension 2, the “Abrikosov” triangular lattice is a global minimizer of W.***

- This conjecture was made in the context of vortices in the GL model, which form Abrikosov lattices.
- Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order n term in the expansion of the minimal logarithmic energy on S^2.
- By our result, solving the conjecture (or identifying $\min W$) is equivalent to computing the $\lim_{\beta \to \infty}$ of the order n term in $\log Z_{n,\beta}$.
- W is a measure of disorder of a given point configuration.
- It allows to control things such as fluctuations of number of points.
There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Conjecture

In dimension 2, the “Abrikosov” triangular lattice is a global minimizer of \(W \).

- this conjecture was made in the context of vortices in the GL model, which form Abrikosov lattices
- Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order \(n \) term in the expansion of the minimal logarithmic energy on \(S^2 \).
- by our result, solving the conjecture (or identifying \(\min W \)) is equivalent to computing the \(\lim_{\beta \to \infty} \) of the order \(n \) term in \(\log Z_{n,\beta} \)
- \(W \) is a measure of disorder of a given point configuration
- it allows to control things such as fluctuations of number of points.
There is no corresponding result in higher dimension! In dimension 3, does the FCC (face centered cubic) lattice play this role?

Conjecture

_in dimension 2, the “Abrikosov” triangular lattice is a global minimizer of \(W \).

- this conjecture was made in the context of vortices in the GL model, which form Abrikosov lattices
- Bétermin shows that this conjecture is equivalent to a conjecture of Brauchart-Hardin-Saff on the order \(n \) term in the expansion of the minimal logarithmic energy on \(S^2 \).
- by our result, solving the conjecture (or identifying \(\min W \)) is equivalent to computing the \(\lim_{\beta \to \infty} \) of the order \(n \) term in \(\log Z_{n,\beta} \)
- \(W \) is a measure of disorder of a given point configuration
- it allows to control things such as fluctuations of number of points
Theorem (Rota Nodari-S)

Let \((x_1, \ldots, x_n) \subset (\mathbb{R}^2)^n\) minimize \(H_n\), and assume the equilibrium measure \(\mu_0 \in L^\infty\), then

- for all \(i\), \(x_i \in \Sigma\)
- letting \(\nu'_n = \sum_i \delta_{x'_i}\), if \(\ell \geq c > 0\) and \(\text{dist}(K_\ell(a), \partial \Sigma') \geq n^{\beta/2} (\beta < 1)\), we have

\[
\limsup_{n \to \infty} \left| \nu'_n(K_\ell(a)) - \int_{K_\ell(a)} \mu'_0(x) \, dx \right| \leq C \ell.
\]

- equidistribution of energy

\[
\limsup_{n \to \infty, \eta \to 0} \left| \int_{K_\ell(a)} |\nabla h'_{n, \eta}|^2 - \kappa_d \nu'_n(K_\ell(a)) w(\eta) \right|

- \int_{K_\ell(a)} \left(\min \mathcal{W} \right) dx \right| \leq o_\ell(\ell^2).
\]
We prove the same for minimizers of \mathcal{W} themselves

Should work also in $d \geq 3$

Compare to Ameur - Ortega Cerda: only first result, with $o(\ell^2)$ error.
The averaged formulation

- Let \((x_1, \ldots, x_n) \in (\mathbb{R}^d)^n\). We denote \(P_n\) the probability, push-forward of the normalized Lebesgue measure on \(\Sigma\) by

\[
\begin{align*}
 \mathbb{P}^n &\rightarrow (x, \nabla h_n(n^{1/d}x + \cdot)) \\
\end{align*}
\]

where \(h_n\) is the potential generated by \(\sum_{i=1}^n \delta_{x_i'} - \mu_0'\).

- If the next order terms in \(H_n\) are bounded by \(Cn^{2-2/d}\), then \(P_n\) is tight and up to a subsequence converges to some probability \(P\).

- \(P\) belongs to the class \(C\) of probabilities on \((x, \nabla h)\)'s such that
 1. The first marginal of \(P\) is the normalized Lebesgue measure on \(\Sigma\), and \(P\) is translation-invariant
 2. For \(P\)-a.e. \((x, \nabla h)\), we have \(\nabla h \in \overline{A}_{\mu_0(x)}\).

- Define then \(\widetilde{W}(P) = \frac{\mid \Sigma \mid}{cd} \int \mathcal{W}(\nabla h) \, dP(x, \nabla h)\)

\[
\min_C \widetilde{W} = \frac{1}{cd} \int_{\Sigma} \min_{\alpha_{\mu_0(x)}} \mathcal{W} \, dx.
\]
Theorem (Rougerie-S)

Let $d \geq 2$, $(x_1, \ldots, x_n) \in (\mathbb{R}^d)^n$ and P_n be as above. Up to extraction of a subsequence, we have $P_n \to P \in \mathcal{C}$ and

$$\liminf_{n \to \infty} n^{2/d-2} \left(H_n(x_1, \ldots, x_n) - n^2 \mathcal{E}(\mu_0) + \left(\frac{n}{2} \log n \right) \mathbb{1}_{d=2} \right) \geq \tilde{\mathcal{W}}(P).$$

This lower bound is sharp, thus for minimizers of H_n

$$\liminf_{n \to \infty} n^{2/d-2} \left(\min H_n - n^2 \mathcal{E}(\mu_0) + \left(\frac{n}{2} \log n \right) \mathbb{1}_{d=2} \right) = \min_{\mathcal{C}} \tilde{\mathcal{W}}$$

and P minimizes $\tilde{\mathcal{W}}$ over \mathcal{C} (i.e. P-a.e. $(x, \nabla h)$ we have ∇h minimizes \mathcal{W} over $\overline{A}_{\mu_0(x)}$).

Informally: for minimizers, after blow-up around "almost every point in $\Sigma"", we get in the limit $n \to \infty$ an infinite configuration of points minimizing \mathcal{W} in the corresponding class.
Theorem (Rougerie-S \(d \geq 3 \), Sandier-S \(d = 1, 2 \))

Let \(\bar{\beta} = \limsup_{n \to +\infty} \beta n^{1-2/d} \), assume \(\bar{\beta} > 0 \). Then, there exists \(C_{\bar{\beta}} \) such that \(\lim_{\bar{\beta} \to \infty} C_{\bar{\beta}} = 0 \), and if \(A_n \subset (\mathbb{R}^d)^n \)

\[
\limsup_{n \to \infty} \frac{\log P_{n, \beta}(A_n)}{n^{2-2/d}} \leq -\frac{\beta}{2} \left(\inf_{P \in A_{\infty}} \tilde{\mathcal{W}} - \xi_d - C_{\bar{\beta}} \right)
\]

where

\[
A_{\infty} = \{ P : \exists (x_1, \ldots, x_n) \in A_n, \ P_n \to P \ \text{up to a subsequence} \} .
\]
Extensions (ongoing)

With T. Leblé, full LDP at speed \(n^{2-2/d} \) with rate function

\[
\frac{\beta}{2} \tilde{\mathcal{W}}(P) + \text{Ent}(P)
\]

where \(\text{Ent} \) is the specific relative entropy with respect to a Poisson process (cf. Rassoul Agha - Seppalainen)

- gives the existence of a thermodynamic limit or order \(n \) term in \(\log Z_{n,\beta} \) expansion
- shows crystallization happens for \(\beta \gg n^{2/d-1} \) but not before
With M. Petrache, case of Riesz kernel interaction potential:

\[H_n(x_1, \ldots, x_n) = \sum_{i \neq j} \frac{1}{|x_i - x_j|^s} + n \sum_{i=1}^{n} V(x_i) \quad d - 2 < s < d \]

similar “renormalized energy" derived for minimizers
Use extension to one more space dimension to replace \(\Delta^\alpha \) by a local operator (Caffarelli-Silvestre)

E. Sandier, S.S. 1D Log Gases and the Renormalized Energy: Crystallization at Vanishing Temperature, *arXiv*

N. Rougerie, S. S. Higher Dimensional Coulomb Gases and Renormalized Energy Functionals, *arXiv*

Thank you for your attention!