The Matching Problem is in Quasi-NC

Ola Svensson and Jakub Tarnawski

Institute for Advanced Study, 22.01.2018
Perfect matching problem

Given a graph, can we pair up all vertices using edges?
Perfect matching problem

Given a graph, can we pair up all vertices using edges?

very tough instance: graph is non-bipartite!
Perfect matching problem

Given a graph, can we pair up all vertices using edges?

very tough instance: graph is non-bipartite!
Perfect matching problem

Benchmark problem in computer science
Perfect matching problem

Benchmark problem in computer science

Algorithms:

- bipartite: Jacobi [XIX century, weighted!]
- general: Edmonds [1965]
 - polynomial-time = efficient
- since then, tons of research and still active
- many models of computation: monotone circuits, extended formulations, parallel, streaming/sublinear, ...
Perfect matching problem

Benchmark problem in computer science

Algorithms:

▶ bipartite: Jacobi [XIX century, weighted!]

▶ general: Edmonds [1965]
 ▶ polynomial-time = efficient

▶ since then, tons of research and still active

▶ many models of computation: monotone circuits, extended formulations, parallel, streaming/sublinear, ...
Parallel complexity

Class \(\mathcal{NC} \): problems that parallelize completely

- **poly \(n \) processors**
- **poly log \(n \) time**

Main open question: is matching in \(\mathcal{NC} \)?
Parallel complexity

Class \mathcal{NC}: problems that parallelize completely

- poly n processors
 - poly log n time

Main open question: is matching in \mathcal{NC}?
Parallel complexity

Class \mathcal{NC}: problems that parallelize completely

- poly n processors
- poly log n time

It’s in Randomized \mathcal{NC}

Main open question: is matching in \mathcal{NC}?
Matching is in \textsc{Randomized} \textit{NC} [Lovász 1979]:
has \textit{randomized} algorithm that uses:

\begin{itemize}
 \item polynomially many processors
 \item polylog time
\end{itemize}
Matching is in \textit{Randomized }\mathcal{NC} \ [\text{Lovász 1979}]:
has \textit{randomized} algorithm that uses:

\begin{itemize}
 \item polynomialsly many processors
 \item polylog time
\end{itemize}

Search version in \textit{Randomized }\mathcal{NC}:

\begin{itemize}
 \item [\text{Karp, Upfal, Wigderson 1986}]
 \item [\text{Mulmuley, Vazirani, Vazirani 1987}]
\end{itemize}
Matching is in Randomized \mathcal{NC} [Lovász 1979]: has randomized algorithm that uses:

- polynomially many processors
- polylog time

Search version in Randomized \mathcal{NC}:

- [Karp, Upfal, Wigderson 1986]
- [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?
Matching is in \textbf{Randomized NC} [Lovász 1979]: has randomized algorithm that uses:

- polynomially many processors
- polylog time

Search version in \textbf{Randomized NC}:

- [Karp, Upfal, Wigderson 1986]
- [Mulmuley, Vazirani, Vazirani 1987]

Can we derandomize efficient computation?

Can we derandomize one of these algorithms?
Is matching in \mathcal{NC}?

- For restricted graph classes:
 - Bipartite regular [Lev, Pippenger, Valiant 1981]
 - Bipartite convex [Dekel, Sahni 1984]
 - Incomparability graphs [Kozen, Vazirani, Vazirani 1985]
 - Bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
 - Claw-free [Chrobak, Naor, Novick 1989]
 - $K_{3,3}$-free (decision version) [Vazirani 1989]
 - Planar bipartite [Miller, Naor 1989]
 - Dense [Dahlhaus, Hajnal, Karpinski 1993]
 - Strongly chordal [Dahlhaus, Karpinski 1998]
 - P_4-tidy [Parfenoff 1998]
 - Bipartite small genus [Mahajan, Varadarajan 2000]
 - Graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
 - Planar (search version) [Anari, Vazirani 2017]

- But not known for:
 - Bipartite
Is matching in \mathcal{NC}?

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- $K_{3,3}$-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P_4-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]
Is matching in \mathcal{NC}?

Yes, for restricted graph classes:

- bipartite regular [Lev, Pippenger, Valiant 1981]
- bipartite convex [Dekel, Sahni 1984]
- incomparability graphs [Kozen, Vazirani, Vazirani 1985]
- bipartite graphs with small number of perfect matchings [Grigoriev, Karpinski 1987]
- claw-free [Chrobak, Naor, Novick 1989]
- $K_{3,3}$-free (decision version) [Vazirani 1989]
- planar bipartite [Miller, Naor 1989]
- dense [Dahlhaus, Hajnal, Karpinski 1993]
- strongly chordal [Dahlhaus, Karpinski 1998]
- P_4-tidy [Parfenoff 1998]
- bipartite small genus [Mahajan, Varadarajan 2000]
- graphs with small number of perfect matchings [Agrawal, Hoang, Thierauf 2006]
- planar (search version) [Anari, Vazirani 2017]

but not known for:

- bipartite
Theorem

Fenner, Gurjar and Thierauf [2015]

Bipartite matching is in QUASI-NC

\((n^{\text{poly log } n \text{ processors, poly log } n \text{ time, deterministic}})\)
Theorem

Fenner, Gurjar and Thierauf [2015]

Bipartite matching is in **QUASI-NC**

\(n^{\text{poly log } n} \) processors, \(\text{poly log } n \) time, deterministic

- Approach fails for non-bipartite graphs

\[\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\end{array} \]
much harder than

\[\begin{array}{cc}
\bullet & \bullet \\
\bullet & \bullet \\
\end{array} \]
Theorem S. and Tarnawski [2017]

General matching is in **QUASI-NC**

\((n^{\text{poly log } n} \text{ processors, poly log } n \text{ time, deterministic}) \)
Theorem S. and Tarnawski [2017]

General matching is in QUASI-\(\mathcal{NC}\)

\((n^{poly \log n} \text{ processors, } poly \log n \text{ time, deterministic})\)

with quasi-polynomial \# processors
Outline

1. Basic approach for derandomization
2. Bipartite case [Fenner, Gurjar, Thierauf 2015]
3. Difficulties of general case & our approach
Basic approach for derandomization
Basic approach for derandomization

(Derandomize one of the randomized algorithms)
Algorithm of Mulmuley, Vazirani, Vazirani’87
Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \ldots, n^2\}$ at random
2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$
Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \ldots, n^2\}$ at random
2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Important that w is polynomially bounded
Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge \(e\) select weight \(w(e) \in \{1, 2, \ldots, n^2\}\) at random

2. Calculate determinant of Tutte matrix where \(X_e\) is replaced by \(2^{w(e)}\)

Important that \(w\) is polynomially bounded
Algorithm

1. For each edge \(e \) select weight \(w(e) \in \{1, 2, \ldots, n^2\} \) at random.

2. Calculate determinant of Tutte matrix where \(X_e \) is replaced by \(2^{w(e)} \).

Important that \(w \) is polynomially bounded
Algorithm of Mulmuley, Vazirani, Vazirani’87

Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \ldots, n^2\}$ at random
2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Important that w is polynomially bounded

Step 2 guaranteed to work if weight function w is isolating: unique min-weight matching
Algorithm

1. For each edge \(e \) select weight \(w(e) \in \{1, 2, \ldots, n^2\} \) at random
2. Calculate determinant of Tutte matrix where \(X_e \) is replaced by \(2^{w(e)} \)

Important that \(w \) is polynomially bounded

random sampling (Step 1)

Isolation Lemma:
\[
\Pr[w \text{ isolating}] \geq 0.9
\]

Step 2 guaranteed to work if weight function \(w \) is **isolating**: unique min-weight matching
Algorithm of Mulmuley, Vazirani, Vazirani'87

Algorithm

1. For each edge e select weight $w(e) \in \{1, 2, \ldots, n^2\}$ at random

2. Calculate determinant of Tutte matrix where X_e is replaced by $2^{w(e)}$

Important that w is polynomially bounded

Isolation Lemma:

$$\Pr[w \text{ isolating}] \geq 0.9$$

Step 2 guaranteed to work if weight function w is **isolating**: unique min-weight matching

random sampling (Step 1)

something deterministic?

Construct isolating w in NC?
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in NC.
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel.
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W^* of weight functions that can be computed in NC such that

1. For any n-vertex graph, there is an isolating $w \in W^*$
2. For $w \in W^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|W^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W^* of weight functions that can be computed in NC such that

1. For any n-vertex graph, there is an isolating $w \in W^*$
2. For $w \in W^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|W^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel

Easy even with $|W^*| \leq 1$
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq \text{poly}(n)$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq \text{poly}(n)$

The oblivious algorithm simply checks all weight functions in parallel

Easy, but best known bound on $|\mathcal{W}^*|$ is exponential in n
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in NC

Oblivious challenge: On input n, construct a family W^* of weight functions that can be computed in NC such that

1. For any n-vertex graph, there is an isolating $w \in W^*$
2. For $w \in W^*$ and edge e, we have $w(e) \leq n^{\text{poly}(\log n)}$
3. The number of weight functions are polynomial $|W^*| \leq n^{\text{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W} of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}$
2. For $w \in \mathcal{W}$ and edge e, we have $w(e) \leq n^{\text{poly}(\log n)}$
3. The number of weight functions are polynomial $|\mathcal{W}| \leq n^{\text{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT’15]: \mathcal{W} exists for bipartite graphs
Oblivious derandomization

Challenge: On input G, construct an isolating weight function in \mathcal{NC}

Oblivious challenge: On input n, construct a family \mathcal{W}^* of weight functions that can be computed in \mathcal{NC} such that

1. For any n-vertex graph, there is an isolating $w \in \mathcal{W}^*$
2. For $w \in \mathcal{W}^*$ and edge e, we have $w(e) \leq n^{\text{poly}(\log n)}$
3. The number of weight functions are polynomial $|\mathcal{W}^*| \leq n^{\text{poly}(\log n)}$

The oblivious algorithm simply checks all weight functions in parallel

Thm[FGT’15]: \mathcal{W}^* exists for bipartite graphs

Thm[ST’17]: \mathcal{W}^* exists for general graphs
Bipartite case

[Fenner, Gurjar, Thierauf 2015]
Bipartite case

[Fenner, Gurjar, Thierauf 2015]
“Greed is good. Greed is right. Greed works. Greed clarifies, cuts through and captures the essence of the evolutionary spirit.”

- Gordon Gecko

Bipartite case

[Fenner, Gurjar, Thierauf 2015]
Bipartite case

[Fenner, Gurjar, Thierauf 2015]
Make progress step-by-step

Construct isolating function iteratively

\[
W = \{ w_k : w_k(e_i) = 2i \text{ mod } k \text{ for } k = 2, 3, \ldots, n^4 \}
\]

Let \(w_1 \in W \) and let \(M_1 \) be perfect matchings minimizing \(w_1 \)

Let \(w_2 \in W \) and let \(M_2 \subseteq M_1 \) be PMs in \(M_1 \) minimizing \(w_2 \)

Let \(w_3 \in W \) and let \(M_3 \subseteq M_2 \) be PMs in \(M_2 \) minimizing \(w_3 \)

...
Make progress step-by-step

Construct isolating function iteratively

Let $\mathcal{W} = \{ w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4 \}$ be a polynomial set of simple weight functions.
Make progress step-by-step

Construct isolating function iteratively

Let $W = \{ w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4 \}$ be a polynomial set of simple weight functions.
Construct isolating function iteratively

Let \(\mathcal{W} = \{ w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4 \} \) be a polynomial set of simple weight functions.

- Select \(w_1 \in \mathcal{W} \) and let \(\mathcal{M}_1 \) be perfect matchings minimizing \(w_1 \).
Construct isolating function iteratively

Let $\mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4\}$ be a polynomial set of simple weight functions

- Select $w_1 \in \mathcal{W}$ and let \mathcal{M}_1 be perfect matchings minimizing w_1
- Select $w_2 \in \mathcal{W}$ and let $\mathcal{M}_2 \subseteq \mathcal{M}_1$ be PMs in \mathcal{M}_1 minimizing w_2
Make progress step-by-step

Construct isolating function iteratively

Let \(\mathcal{W} = \{ w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4 \} \) be a polynomial set of simple weight functions

- Select \(w_1 \in \mathcal{W} \) and let \(\mathcal{M}_1 \) be perfect matchings minimizing \(w_1 \)
- Select \(w_2 \in \mathcal{W} \) and let \(\mathcal{M}_2 \subseteq \mathcal{M}_1 \) be PMs in \(\mathcal{M}_1 \) minimizing \(w_2 \)
- Select \(w_3 \in \mathcal{W} \) and let \(\mathcal{M}_3 \subseteq \mathcal{M}_2 \) be PMs in \(\mathcal{M}_2 \) minimizing \(w_3 \)

 \[\vdots \]
Construct isolating function iteratively

Let $W = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4\}$ be a polynomial set of simple weight functions

- Select $w_1 \in W$ and let M_1 be perfect matchings minimizing w_1
- Select $w_2 \in W$ and let $M_2 \subseteq M_1$ be PMs in M_1 minimizing w_2
- Select $w_3 \in W$ and let $M_3 \subseteq M_2$ be PMs in M_2 minimizing w_3

 \vdots

How many $w_1, \ldots, w_\ell \in W$ **necessary for** $|M_\ell| = 1$?
Construct isolating function iteratively

Let \(\mathcal{W} = \{ w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4 \} \) be a polynomial set of simple weight functions

- Select \(w_1 \in \mathcal{W} \) and let \(\mathcal{M}_1 \) be perfect matchings minimizing \(w_1 \)

- Select \(w_2 \in \mathcal{W} \) and let \(\mathcal{M}_2 \subseteq \mathcal{M}_1 \) be PMs in \(\mathcal{M}_1 \) minimizing \(w_2 \)

- Select \(w_3 \in \mathcal{W} \) and let \(\mathcal{M}_3 \subseteq \mathcal{M}_2 \) be PMs in \(\mathcal{M}_2 \) minimizing \(w_3 \)

\[\vdots \]

How many \(w_1, \ldots, w_\ell \in \mathcal{W} \) necessary for \(|\mathcal{M}_\ell| = 1 \)?

Thm [FGT’15]:

For any \(G \), there is \(w_1, \ldots, w_{\log_2(n)} \in \mathcal{W} \) so that \(|\mathcal{M}_{\log_2(n)}| = 1 \)
Make progress step-by-step

Construct isolating function iteratively

Let $\mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4\}$ be a polynomial set of simple weight functions

- Select $w_1 \in \mathcal{W}$ and let \mathcal{M}_1 be perfect matchings minimizing w_1
- Select $w_2 \in \mathcal{W}$ and let $\mathcal{M}_2 \subseteq \mathcal{M}_1$ be PMs in \mathcal{M}_1 minimizing w_2
- Select $w_3 \in \mathcal{W}$ and let $\mathcal{M}_3 \subseteq \mathcal{M}_2$ be PMs in \mathcal{M}_2 minimizing w_3

 \vdots

How many $w_1, \ldots, w_\ell \in \mathcal{W}$ necessary for $|\mathcal{M}_\ell| = 1$?

Thm [FGT’15]:

For any G, there is $w_1, \ldots, w_{\log_2(n)} \in \mathcal{W}$ so that $|\mathcal{M}_{\log_2(n)}| = 1$

\[\downarrow \]

$\mathcal{W}^* = \{n^{9(\log(n))}w_1 + n^{9(\log(n)-1)}w_2 + \cdots + 1 \cdot w_{\log(n)} : w_1, \ldots, w_{\log_2(n)} \in \mathcal{W}\}$
gives oblivious quasi-polynomial derandomization
GOAL: For *any* n-vertex graph G, show that there is

$$w_1, \ldots, w_{\log n} \in \mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4\}$$

so that $|\mathcal{M}_{\log n}| = 1$
GOAL: For any n-vertex graph G, show that there is

$$w_1, \ldots, w_{\log n} \in \mathcal{W} = \{w_k : w_k(e_i) = 2^i \mod k \text{ for } k = 2, 3, \ldots, n^4\}$$

so that $|\mathcal{M}_{\log n}| = 1$

We need good progress measure
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$.
Consider min-weight perfect matchings \(M, M' \) with \(w(M) = w(M') \).
Minimum perfect matchings of the same weight

- Consider min-weight perfect matchings \(M, M' \) with \(w(M) = w(M') \)

\[
\begin{align*}
\text{Progress: assign, 0 discrepancy to "many" cycles}
\end{align*}
\]
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$

Symmetric difference = alternating cycles

Define discrepancy of a cycle:
$$d_w(C) := w(e_1) - w(e_2) + w(e_3) - w(e_4)$$

If $\forall C d_w(C) = 0$, then w isolating!

Progress: assign 0 discrepancy to "many" cycles
Consider min-weight perfect matchings \(M, M' \) with \(w(M) = w(M') \).

Symmetric difference

Alternating cycles

In each cycle \(C \),

\[w(M \cap C) = w(M' \cap C) \]

(otherwise could get lighter matching)
Minimum perfect matchings of the same weight

- Consider min-weight perfect matchings M, M' with $w(M) = w(M')$
- symmetric difference
 \Rightarrow alternating cycles
- in each cycle C,
 \[w(M \cap C) = w(M' \cap C) \]
 (otherwise could get lighter matching)

Define discrepancy of a cycle C:
\[d_w(C) := w(e_1) - w(e_2) + w(e_3) - w(e_4) \]

If $\forall C \, d_w(C) = 0$, then w isolating!

Progress: assign 0 discrepancy to "many" cycles
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$

- symmetric difference $= \text{alternating cycles}$

- in each cycle C,
 $w(M \cap C) = w(M' \cap C)$
 (otherwise could get lighter matching)

- define discrepancy of a cycle:
 $d_w(C) := w(e_1) - w(e_2) + w(e_3) - w(e_4)$
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$

- symmetric difference
 $= \text{alternating cycles}$

- in each cycle C,
 $w(M \cap C) = w(M' \cap C)$
 (otherwise could get lighter matching)

- define **discrepancy** of a cycle:
 $d_w(C) := w(e_1) - w(e_2) + w(e_3) - w(e_4)$

- $d_w(C) = 0$
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$

- symmetric difference
 $= \text{alternating cycles}$
 in each cycle C
 $w(M \cap C) = w(M' \cap C)$
 (otherwise could get lighter matching)

- define discrepancy of a cycle:
 \begin{align*}
d_w(C) &:= w(e_1) - w(e_2) + w(e_3) - w(e_4) \\
d_w(C) &= 0
\end{align*}

If $\forall C \ d_w(C) \neq 0$, then w isolating!
Consider min-weight perfect matchings M, M' with $w(M) = w(M')$

- symmetric difference
 - alternating cycles
 - in each cycle C, $w(M \cap C) = w(M' \cap C)$
 (otherwise could get lighter matching)
- define discrepancy of a cycle:
 $$d_w(C) := w(e_1) - w(e_2) + w(e_3) - w(e_4)$$
- $d_w(C) = 0$

If $(\forall C) d_w(C) \neq 0$, then w isolating!

Progress: assign $\neq 0$ discrepancy to “many” cycles
Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so that all of them have non-zero discrepancy.
Removing cycles

A graph may have exponentially many cycles \(\Rightarrow \) seems hard to find \(w \) so that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of \(n^4 \) cycles, some \(w \in \mathcal{W} \) assigns all of them \(\neq 0 \) discrepancy
Removing cycles

A graph may have exponentially many cycles ⇒ seems hard to find w so that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n^4 cycles, some $w \in \mathcal{W}$ assigns all of them $\neq 0$ discrepancy

If $\leq n^4$ cycles in the graph: done!
A graph may have exponentially many cycles \Rightarrow seems hard to find w so that all of them have non-zero discrepancy

Don’t be greedy!

Old Lemma:

For any collection of n^4 cycles, some $w \in \mathcal{W}$ assigns all of them $\neq 0$ discrepancy

If $\leq n^4$ cycles in the graph: done!

Not so easy, but we can cope with all 4-cycles
Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy.
Select \(w_1 \in \mathcal{W} \) so that all 4-cycles have \(\neq 0 \) discrepancy.

What can we say about the active subgraph \(G_1 \) that contains those edges that are in a min-weight perfect matching?
Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy

What can we say about the active subgraph G_1 that contains those edges that are in a min-weight perfect matching?
Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy.
Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy.

All matchings of G

$\mathcal{M}_1 = \{M, M'\}$
Select \(w_1 \in \mathcal{W} \) so that all 4-cycles have \(\neq 0 \) discrepancy.

All matchings of \(G \)

\[\mathcal{M}_1 = \{ M, M' \} \]

\[G_1 = (V, \bigcup_{M \in \mathcal{M}_1} M) \]
Select $w_1 \in \mathcal{W}$ so that all 4-cycles have $\neq 0$ discrepancy.

All matchings of G

$\mathcal{M}_1 = \{M, M'\}$

$G_1 = (\mathcal{V}, \cup_{M \in \mathcal{M}_1} M)$

What can we say about the active subgraph G_1 that contains those edges that are in a min-weight perfect matching?
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph.
Bipartite key property: Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.
Bipartite key property: Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph

\[
d_w(C_1) = 1 \neq 0 \\
d_w(C_2) = 1 \neq 0
\]
Bipartite key property: Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph.

\[d_w(C_1) = 1 \neq 0 \]
\[d_w(C_2) = 1 \neq 0 \]
Bipartite key property: Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph

\[
d_w(C_1) = 1 \neq 0 \\
d_w(C_2) = 1 \neq 0
\]
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph

Proof: Let \(\mathcal{M} \) be the set of perfect matchings minimizing \(w \)

- Consider the convex hull of \(\mathcal{M} \) (face \(F \) of the bipartite matching polytope):

\[
\text{PM} : \text{perfect matching polytope (convex hull of matchings)}
\]
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph.

Proof: Let \(\mathcal{M} \) be the set of perfect matchings minimizing \(w \).

- Consider the convex hull of \(\mathcal{M} \) (face \(F \) of the bipartite matching polytope):

\[
PM : \text{perfect matching polytope (convex hull of matchings)}
\]
Bipartite key property: Once we assign a cycle ≠ 0 discrepancy, it will disappear from the active subgraph

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

- Consider the convex hull of \mathcal{M} (face F of the bipartite matching polytope):

PM : perfect matching polytope (convex hull of matchings)
Bipartite key property: Once we assign a cycle ≠ 0 discrepancy, it will disappear from the active subgraph

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

- Consider the convex hull of \mathcal{M} (face F of the bipartite matching polytope):

\mathbf{PM}: perfect matching polytope (convex hull of matchings)

<table>
<thead>
<tr>
<th>Bipartite PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(\delta(v)) = 1$ for every $v \in V$</td>
</tr>
<tr>
<td>$x_e \geq 0$ for every $e \in E$</td>
</tr>
</tbody>
</table>
Bipartite key property: Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph

Proof: Let \mathcal{M} be the set of perfect matchings minimizing w

- Consider the convex hull of \mathcal{M} (face F of the bipartite matching polytope):

\mathcal{M}: perfect matching polytope (convex hull of matchings)

<table>
<thead>
<tr>
<th>Bipartite PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x(\delta(v)) = 1$ for every $v \in V$</td>
</tr>
<tr>
<td>$x_e \geq 0$ for every $e \in E$</td>
</tr>
</tbody>
</table>

F is simply a subgraph
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph

Proof: Let \(\mathcal{M} \) be the set of perfect matchings minimizing \(w \)

- Consider the convex hull of \(\mathcal{M} \) (face \(F \) of the bipartite matching polytope):

 \[F \]

 PM: perfect matching polytope (convex hull of matchings)

 \[x(\delta(v)) = 1 \quad \text{for every } v \in V \]

 \[x_e \geq 0 \quad \text{for every } e \in E \]

 F is simply a subgraph

- What can we say about the weight of points in \(F \)?
Bipartite key property: Once we assign a cycle \(\neq 0 \) discrepancy, it will disappear from the active subgraph

Proof: Let \(\mathcal{M} \) be the set of perfect matchings minimizing \(w \)

- Consider the convex hull of \(\mathcal{M} \) (face \(F \) of the bipartite matching polytope):

\[
F \quad \text{PM} : \text{perfect matching polytope (convex hull of matchings)}
\]

<table>
<thead>
<tr>
<th>Bipartite PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x(\delta(v)) = 1) for every (v \in V)</td>
</tr>
<tr>
<td>(x_e \geq 0) for every (e \in E)</td>
</tr>
<tr>
<td>(F) is simply a subgraph</td>
</tr>
</tbody>
</table>

- What can we say about the weight of points in \(F \)?

Every \(x, y \in F \) have same weight: \(\sum_e w(e)x_e = \sum_e w(e)y_e \)
F is the convex hull of $\mathcal{M} \Rightarrow$ every $x, y \in F$ have same weight

F is simply a subgraph

PM: perfect matching polytope (convex hull of matchings)

Bipartite PM

$x(\delta(v)) = 1$ for every $v \in V$

$x_e \geq 0$ for every $e \in E$
F is the convex hull of $\mathcal{M} \Rightarrow$ every $x, y \in F$ have same weight

PM : perfect matching polytope (convex hull of matchings)

F is simply a subgraph

Bipartite PM

\[
\begin{align*}
 x(\delta(v)) &= 1 \quad \text{for every } v \in V \\
 x_e &\geq 0 \quad \text{for every } e \in E
\end{align*}
\]

Suppose active subgraph has cycle C of $\neq 0$ discrepancy

$w(\text{green edges}) \neq w(\text{red edges})$
F is the convex hull of \mathcal{M} \Rightarrow every $x, y \in F$ have same weight

PM : perfect matching polytope (convex hull of matchings)

Bipartite PM

\[
\begin{aligned}
x(\delta(v)) &= 1 & \text{for every } v \in V \\
x_e &\geq 0 & \text{for every } e \in E
\end{aligned}
\]

F is simply a subgraph

(\text{edge set } \bigcup_{M \in \mathcal{M}} M)

\triangleright Suppose active subgraph has cycle C of $\neq 0$ discrepancy

\[
C
\]

$w(\text{green edges}) \neq w(\text{red edges})$

\triangleright Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} 1_M$ be the mean of the face F
\(F \) is the convex hull of \(\mathcal{M} \) \(\Rightarrow \) every \(x, y \in F \) have same weight

PM : perfect matching polytope (convex hull of matchings)

Bipartite PM

\[
\begin{align*}
x(\delta(v)) &= 1 \quad \text{for every } v \in V \\
x_e &\geq 0 \quad \text{for every } e \in E
\end{align*}
\]

\(F \) is simply a subgraph

(\text{edge set } \bigcup_{M \in \mathcal{M}} M)

▶ Suppose active subgraph has cycle \(C \) of \(\neq 0 \) discrepancy

\[
 x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} 1_M \quad \text{be the mean of the face } F
\]

▶ Let \(x_e > 0 \) for every \(e \in C \) (since support of \(x \) equals \(\bigcup_{M \in \mathcal{M}} M \))

▶ Increasing red edges while decreasing green maintain degrees

▶ So we obtain a new point \(y \in F \) of different weight; contradiction
\(F \) is the convex hull of \(\mathcal{M} \) \(\Rightarrow \) every \(x, y \in F \) have same weight

\[
\begin{align*}
\text{PM} & : \text{perfect matching polytope (convex hull of matchings)} \\
\text{Bipartite PM} & \\
& x(\delta(v)) = 1 \quad \text{for every } v \in V \\
& x_e \geq 0 \quad \text{for every } e \in E \\
\end{align*}
\]

\(F \) is simply a subgraph

(\text{edge set } \cup_{M \in \mathcal{M}} M)

- Suppose active subgraph has cycle \(C \) of \(\neq 0 \) discrepancy

\[
\begin{align*}
\text{Let } x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} 1_M \text{ be the mean of the face } F \\
\text{Then } x_e > 0 \text{ for every } e \in C \quad (\text{since support of } x \text{ equals } \cup_{M \in \mathcal{M}} M) \\
\text{Increasing red edges while decreasing green maintain degrees}
\end{align*}
\]

\[
\begin{align*}
w(\text{green edges}) & \neq w(\text{red edges}) \\
\end{align*}
\]
F is the convex hull of \mathcal{M} \Rightarrow every $x, y \in F$ have same weight

Perfect Matching Polytope (convex hull of matchings)

\[x(\delta(v)) = 1 \quad \text{for every } v \in V \]
\[x_e \geq 0 \quad \text{for every } e \in E \]

F is simply a subgraph

Suppose active subgraph has cycle C of $\neq 0$ discrepancy

\[w(\text{green edges}) \neq w(\text{red edges}) \]

Let $x = \frac{1}{|\mathcal{M}|} \sum_{M \in \mathcal{M}} 1_M$ be the mean of the face F

Then $x_e > 0$ for every $e \in C$ (since support of x equals $\bigcup_{M \in \mathcal{M}} M$)

Increasing red edges while decreasing green maintain degrees

So we obtain a new point $y \in F$ of different weight; contradiction
Old Lemma:

For any collection of n^4 cycles, some $w \in \mathcal{W}$ assigns all of them $\neq 0$ discrepancy

Bipartite key property:

Once we assign a cycle $\neq 0$ discrepancy, it will disappear from the active subgraph
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy

A graph has at most n^4 cycles of length 4
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy

- Bipartite key property: $G_1 = (V, \cup_{M \in \mathcal{M}_1} M)$ has no cycles of length ≤ 4
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy

- Bipartite key property: $G_1 = (V, \bigcup_{M \in \mathcal{M}_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8-cycles in G_1 have $\neq 0$ discrepancy

A graph with no ≤ 4-cycles has at most n^4 cycles of length ≤ 8
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy

- Bipartite key property: $G_1 = (V, \cup_{M \in \mathcal{M}_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8-cycles in G_1 have $\neq 0$ discrepancy

- Bipartite key property: $G_2 = (V, \cup_{M \in \mathcal{M}_2} M)$ has no cycles of length ≤ 8
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy

- Bipartite key property: $G_1 = (V, \cup_{M \in \mathcal{M}_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8-cycles in G_1 have $\neq 0$ discrepancy

- Bipartite key property: $G_2 = (V, \cup_{M \in \mathcal{M}_2} M)$ has no cycles of length ≤ 8

Select $w_3 \in \mathcal{W}$ so that all ≤ 16-cycles in G_2 have $\neq 0$ discrepancy

A graph with no ≤ 8-cycles has at most n^4 cycles of length ≤ 16
Select $w_1 \in \mathcal{W}$ so that all 4-cycles in G have $\neq 0$ discrepancy
 - Bipartite key property: $G_1 = (V, \cup_{M \in \mathcal{M}_1} M)$ has no cycles of length ≤ 4

Select $w_2 \in \mathcal{W}$ so that all ≤ 8-cycles in G_1 have $\neq 0$ discrepancy
 - Bipartite key property: $G_2 = (V, \cup_{M \in \mathcal{M}_2} M)$ has no cycles of length ≤ 8

Select $w_3 \in \mathcal{W}$ so that all ≤ 16-cycles in G_2 have $\neq 0$ discrepancy
 - Bipartite key property: $G_3 = (V, \cup_{M \in \mathcal{M}_3} M)$ has no cycles of length ≤ 16

\[\vdots \]
Select \(w_1 \in W \) so that all 4-cycles in \(G \) have \(\neq 0 \) discrepancy

- Bipartite key property: \(G_1 = (V, \cup_{M \in M_1} M) \) has no cycles of length \(\leq 4 \)

Select \(w_2 \in W \) so that all \(\leq 8 \)-cycles in \(G_1 \) have \(\neq 0 \) discrepancy

- Bipartite key property: \(G_2 = (V, \cup_{M \in M_2} M) \) has no cycles of length \(\leq 8 \)

Select \(w_3 \in W \) so that all \(\leq 16 \)-cycles in \(G_2 \) have \(\neq 0 \) discrepancy

- Bipartite key property: \(G_3 = (V, \cup_{M \in M_3} M) \) has no cycles of length \(\leq 16 \)

\[\vdots \]

\(G_{\log n} = (V, \cup_{M \in M_{\log n}} M) \) have no cycles so \(|M_{\log n}| = 1 \) as required
A graph with no ≤ 4-cycles has at most n^4 cycles of length 8.
A graph with no ≤ 4-cycles has at most n^4 cycles of length 8

- Associate a signature (a, b, c, d) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex
A graph with no \(\leq 4 \)-cycles has at most \(n^4 \) cycles of length 8

- Associate a signature \((a, b, c, d)\) with each 8-cycle
 - \(a \) is the first vertex, \(b \) is the third vertex, \(c \) is the fifth vertex, \(d \) is the seventh vertex

Two cycles cannot have the same signature as that would imply a 4-cycle:
Final argument

A graph with no \(\leq 4 \)-cycles has at most \(n^4 \) cycles of length 8

▪ Associate a signature \((a, b, c, d)\) with each 8-cycle
 ▪ \(a \) is the first vertex, \(b \) is the third vertex, \(c \) is the fifth vertex, \(d \) is the seventh vertex

\[
\begin{align*}
&a & b \\
&d & c
\end{align*}
\]

▪ Two cycles cannot have the same signature as that would imply a 4-cycle:

\[
\begin{align*}
&a & b \\
&d & c
\end{align*}
\]
A graph with no ≤ 4-cycles has at most n^4 cycles of length 8

- Associate a signature (a, b, c, d) with each 8-cycle
 - a is the first vertex, b is the third vertex, c is the fifth vertex, d is the seventh vertex

- Two cycles cannot have the same signature as that would imply a 4-cycle:

- So $\# 8$-cycles is at most $\#$ signatures which is at most n^4
Some perspective
Polyhedral perspective

isolating in stages

= decreasing sequence of faces
isolating in stages
= decreasing sequence of faces

Polyhedral perspective
isolating in stages

\begin{align*}
F_1 &\quad w = w_1 \\
F_1 &\quad w = \langle w_1, w_2 \rangle \\
F_1 &\quad w = \langle w_1, w_2, w_3 \rangle \\
\end{align*}

= decreasing sequence of faces

Polyhedral perspective
Polyhedral perspective

isolating in stages
 =
 decreasing sequence of faces

$F_1 = w_1$

$F_2 = \langle w_1, w_2 \rangle$

$F_3 = \langle w_1, w_2, w_3 \rangle$

w is isolating
Polyhedral perspective

isolating in stages
= decreasing sequence of faces

F_1

w_1

F_2

F_3

w_2

$w = w_1$
isolating in stages
= decreasing sequence of faces

Polyhedral perspective
Polyhedral perspective

isolating in stages
= decreasing sequence of faces

F_1
F_2

w_1
w_2

$w = \langle w_1, w_2 \rangle$
Polyhedral perspective

isolating in stages
= decreasing sequence of faces

F_1, F_2, F_3

$w = \langle w_1, w_2 \rangle$
isolating in stages

= decreasing sequence of faces

$w = \langle w_1, w_2 \rangle$
Polyhedral perspective

1. F_1

2. F_2

3. F_2

isolating in stages

= decreasing sequence of faces

$w = \langle w_1, w_2 \rangle$
isolating in stages
= decreasing sequence of faces

$w = \langle w_1, w_2 \rangle$
Polyhedral perspective

isolating in stages
= decreasing sequence of faces

$w = \langle w_1, w_2, w_3 \rangle$

$F_1 \rightarrow w_1 \rightarrow F_2 \rightarrow w_2 \rightarrow F_3 \rightarrow w_3$
Polyhedral perspective

isolating in stages
= decreasing sequence of faces

\[w = \langle w_1, w_2, w_3 \rangle \]
isolating in stages

= decreasing sequence of faces

\[w = \langle w_1, w_2, w_3 \rangle \]

\(w \) is isolating
isolating in stages
= decreasing sequence of faces

Fast decrease due to bipartite matching polytope:
- every face is a subgraph
- Key property: girth doubles in every step

\[w = \langle w_1, w_2, w_3 \rangle \]

\(w \) is isolating
Difficulties of general case & our approach

Bipartite key property: Once we assign a cycle, it will disappear from the active subgraph
Difficulties of general case & our approach

Bipartite key property: Once we assign a cycle ≠ 0 discrepancy, it will disappear from the active subgraph.
General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^E$:

- $x_e \geq 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v
- $x(\delta(S)) \geq 1$ for every odd set S of vertices

$(\delta(S) = \text{edges crossing } S)$
Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^E$:

- $x_e \geq 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v
- $x(\delta(S)) \geq 1$ for every odd set S of vertices

So every face F is given as:

$$F = \{ x \in \text{PM} : x_e = 0 \text{ for some edges } e, \quad x(\delta(S)) = 1 \text{ for some odd sets } S \}$$
General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^E$:

- $x_e \geq 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v
- $x(\delta(S)) \geq 1$ for every odd set S of vertices

So every face F is given as:

$$F = \{x \in \text{PM} : x_e = 0 \text{ for some edges } e, \quad x(\delta(S)) = 1 \text{ for some odd sets } S\}$$

- In bipartite case:
 $F = \{x \in \text{PM} : x_e = 0 \text{ for some edges } e\}$
 (F given by the active subgraph)

- Now, faces are exponentially harder

- Need $2^{\Omega(n)}$ inequalities [Rothvoss 2013]
General graphs are “exponentially” harder

Edmonds [1965] Perfect matching polytope description on $x \in \mathbb{R}^E$:

- $x_e \geq 0$ for every edge e
- $x(\delta(v)) = 1$ for every vertex v

So every face F is given as:

$$F = \{x \in \text{PM} : x_e = 0 \text{ for some edges } e, x(\delta(S)) = 1 \text{ for some odd sets } S\}$$

Girth does not make sense as progress measure and bipartite key property fails!

- In bipartite case:
 $F = \{x \in \text{PM} : x_e = 0 \text{ for some edges } e\}$
 (F given by the active subgraph)
- Now, faces are exponentially harder
- Need $2^{\Omega(n)}$ inequalities [Rothvoss 2013]
How bipartite key property fails

$S_1 \subseteq C$ want:
$\text{d} \omega(C), 0 \leq \text{d} \omega(C) \leq 2$, 0

PM: convex hull of all four matchings:
F: convex hull of matchings of weight 1:
$F \subseteq \text{PM}$ but still has all edges...
$F \subseteq \text{PM}$ but still has all edges...
$F = \{ x \in \text{PM}: x(\delta(S)) = 1 \}$
How bipartite key property fails

PM: convex hull of all four matchings:
How bipartite key property fails

want:
\[d_w(C) \neq 0 \]

\[d_w(C) = 2 \]

PM: convex hull of all four matchings:

\[F \subset \text{PM} \]

but still has all edges...
How bipartite key property fails

\[d_w(C) = 2 \neq 0 \]

PM: convex hull of all four matchings:
How bipartite key property fails

PM: convex hull of all four matchings:

\[
\begin{align*}
F : \text{convex hull of matchings of weight 1:} & \\
\end{align*}
\]

\[
d_w(C) = 2 \neq 0
\]
How bipartite key property fails

PM: convex hull of all four matchings:

\[d_w(C) = 2 \neq 0 \]

\[F = \{ x \in PM : x(\delta(S)) = 1 \} \]

\[F \subsetneq PM \] but still has all edges... 😞
How bipartite key property fails

\[d_w(C) = 2 \neq 0 \]

PM: convex hull of all four matchings:

![Matchings](image)

F: convex hull of matchings of weight 1:

![Matchings](image)

\[F \subset PM \text{ but still has all edges... 😞} \]

\[F = \{ x \in PM : x(\delta(S)) = 1 \} \]
How bipartite key property fails

PM: convex hull of all four matchings:

F: convex hull of matchings of weight 1:

$F \subset PM$ but still has all edges...

$F = \{ x \in PM : x(\delta(S)) = 1 \}$

$d_w(C) = 2 \neq 0$
Main ingredients:

▶ Laminar family of tight constraints (at most $2n - 1$ constraints instead of exponential)

▶ Tight cut constraints decompose the instance ⇒ divide-and-conquer approach
Main ingredients:
- Laminar family of tight constraints (at most $2^n - 1$ constraints instead of exponential)
- Tight cut constraints decompose the instance ⇒ divide-and-conquer approach
Main ingredients:

- Laminar family of tight constraints (at most $2n - 1$ constraints instead of exponential)
- Tight cut constraints decompose the instance
 \[\Rightarrow \text{divide-and-conquer approach} \]

quite technical path
Every face F is given as:

$$F = \{ x \in PM : x_e = 0 \text{ for some edges } e, \quad x(\delta(S)) = 1 \text{ for some odd sets } S \}$$
Every face F is given as:

$$F = \{ x \in PM : x_e = 0 \text{ for some edges } e, \quad x(\delta(S)) = 1 \text{ for some odd sets } S \}$$

Great news: “some” can be chosen to be a laminar family!
Laminarity

face \sim (edge subset, laminar family)
Laminarity

face \sim (edge subset, laminar family)
Tight odd cuts decomposes instance

- exactly one edge crossing

- once we fix a boundary edge...
Tight odd cuts decomposes instance exactly one edge crossing

- once we fix a boundary edge...
Tight odd cuts decomposes instance

exactly one edge crossing

- once we fix a boundary edge...
Tight odd cuts decomposes instance

- once we fix a boundary edge...
- ... the instance decomposes into two independent ones
Tight odd cuts decomposes instance

- once we fix a boundary edge...
- ... the instance decomposes into two independent ones
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every boundary edge determines entire matching
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every *boundary edge* determines entire matching
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every **boundary edge** determines entire matching
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every boundary edge determines entire matching
- so: at most n^2 perfect matchings
Between friends: cycles that do not cross tight odd sets behave like in the bipartite case and can thus be removed

Simplest case: only one tight odd set

- then every **boundary edge** determines entire matching
- so: at most n^2 perfect matchings
- some $w \in \mathcal{W}$ will give them different weights
Divide & conquer: chain case

As before, we isolate the whole instance in $O(\log n)$ phases...

...n^2 choices f

Instance where both sides of the cut are isolated, one $w \in W'$ makes the whole subinstance isolated
Divide & conquer: chain case

As before, we isolate the whole instance in $O(\log n)$ phases...

Instance where both sides of the cut are isolated, one $w \in W'$ makes the whole subinstance isolated.
As before, we isolate the whole instance in $O(\log n)$ phases...

Instance where both sides of the cut are isolated, one $w \in W'$ makes the whole subinstance isolated.
Divide & conquer: chain case

As before, we isolate the whole instance in $O(\log n)$ phases...
Divide & conquer: chain case

As before, we isolate the whole instance in $O(\log n)$ phases.

Instance where both sides of the cut are isolated, one $w \in W'$ makes the whole subinstance isolated.
Divide & conquer: chain case

Instance where both sides of the cut are isolated, one \(w \in \mathcal{W'} \) makes the whole subinstance isolated.
Divide & conquer: chain case

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated

Instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated
Divide & conquer: chain case

Now instance where both sides of the cut are isolated, one \(w \in \mathcal{W}' \) makes the whole instance isolated :)
Divide & conquer: chain case

As before we isolate the whole instance in $O(\log n)$ phases

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole instance isolated :)

Now instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated

Instance where both sides of the cut are isolated, one $w \in \mathcal{W}'$ makes the whole subinstance isolated
quite technical path

harder than

Removing cycles similar to bipartite case

The chain case (divide-and-conquer)

Theorem S. and Tarnawski [2017]

General matching is in quasi-NC with quasi-polynomial #processors
Carefully selected progress measure allows us to reduce laminar case to

- Removing cycles similar to bipartite case
- The chain case (divide-and-conquer)
Carefully selected progress measure allows us to reduce laminar case to

- Removing cycles similar to bipartite case
- The chain case (divide-and-conquer)

Theorem

S. and Tarnawski [2017]

General matching is in **QUASI-NC**

with quasi-polynomial \# processors
Future work

- go down to NC
 - even for bipartite graphs
 ✓ for planar graphs: [Anari, Vazirani 2017]
Future work

- go down to \mathcal{NC}
 - even for bipartite graphs
 - ✓ for planar graphs: [Anari, Vazirani 2017]

- derandomize Isolation Lemma in other cases (any efficiently solvable $\{0, 1\}$ polytope?)
 - ✓ matroid intersection: [Gurjar, Thierauf 2017]
 - ✓ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]
Future work

- go down to NC
 - even for bipartite graphs
 - for planar graphs: [Anari, Vazirani 2017]

- derandomize Isolation Lemma in other cases (any efficiently solvable \(\{0, 1\}\) polytope?)
 - matroid intersection: [Gurjar, Thierauf 2017]
 - totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

Given: graph with some edges red, number \(k\).
Is there a perfect matching with exactly \(k\) red edges?

- randomized complexity: even Randomized NC
- deterministic complexity: is it in \(\mathcal{P}\)?
Future work

- go down to \mathcal{NC}
 - even for bipartite graphs
 ✓ for planar graphs: [Anari, Vazirani 2017]

- derandomize Isolation Lemma in other cases (any efficiently solvable $\{0, 1\}$ polytope?)
 ✓ matroid intersection: [Gurjar, Thierauf 2017]
 ✓ totally unimodular polytopes: [Gurjar, Thierauf, Vishnoi 2017]

Exact Matching Problem

Given: graph with some edges red, number k.
Is there a perfect matching with exactly k red edges?

- randomized complexity: even $\text{Randomized } \mathcal{NC}$
- deterministic complexity: is it in \mathcal{P}?

Thank you!