Lifting Galois representations

Daniel Le

IAS, 2016
Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives $H^i_{\text{sing}}(X,\mathbb{C}) \cong \bigoplus_{p+q=i} H^p(X,\Omega^q)$.

Let $h_{p,q} = \dim \mathbb{C}H^p(X,\Omega^q)$.

(Riemann) If X is an abelian variety of dimension g, then $H^1(X,\mathcal{O})$ and $H^0(X,\Omega^1)$ are g-dimensional and the Hodge filtration (with rational structure) determines X up to isogeny.
Cohomology with \(\mathbb{C} \)-coefficients

Let \(X \) be a smooth projective variety over \(\mathbb{Q} \).
Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$H^i_{\text{sing}}(X(\mathbb{C})^{\text{an}}, \mathbb{C}) \cong \bigoplus_{p+q=i} H^p(X, \Omega^q).$$
Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$H^i_{\text{sing}}(X(\mathbb{C})^{\text{an}}, \mathbb{C}) \cong \bigoplus_{p+q=i} H^p(X, \Omega^q).$$

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q)$.
Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$H^i_{\text{sing}}(X(\mathbb{C})^{\text{an}}, \mathbb{C}) \cong \bigoplus_{p+q=i} H^p(X, \Omega^q).$$

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q)$.

(Riemann) If X is an abelian variety of dimension g, then $H^1(X, \mathcal{O})$ and $H^0(X, \Omega^1)$ are g-dimensional
Cohomology with \mathbb{C}-coefficients

Let X be a smooth projective variety over \mathbb{Q}. The Hodge filtration gives

$$H^i_{\text{sing}}(X(\mathbb{C})^{\text{an}}, \mathbb{C}) \cong \bigoplus_{p+q=i} H^p(X, \Omega^q).$$

Let $h^{p,q} = \dim_{\mathbb{C}} H^p(X, \Omega^q)$.

(Riemann) If X is an abelian variety of dimension g, then $H^1(X, \mathcal{O})$ and $H^0(X, \Omega^1)$ are g-dimensional and the Hodge filtration (with rational structure) determines X up to isogeny.
Cohomology with \(\mathbb{Q}_p \)-coefficients

Let \(H^i = H^i_{\text{et}}(X/\mathbb{Q}, \mathbb{Q}_p) \). \(G_{\mathbb{Q}_p} \) acts on \(H^i \).

Grothendieck–Lefschetz:
\[
\#X(F_\ell) = \sum_{i} (-1)^i \text{Tr}(\text{Frob}_\ell, H^i) \text{ for almost all } \ell.
\]

Let \(Z_p(1) \) def = Hom(\(\mathbb{Q}_p/\mathbb{Z}_p \), \(\mu_{\mathbb{Q}_p} \)).

Faltings:
\[
H^i \otimes \mathbb{Q}_p \mathbb{C}_p \cong \bigoplus_{p+q=i} H^p(X/\mathbb{Q}_p, \Omega^q) \otimes \mathbb{Q}_p \mathbb{C}_p(-q)
\]
This is \(G_{\mathbb{Q}_p} \)-equivariant, so \(h^p,q \) are determined.

\(\lambda \) (= HT weights of \(H^i \)) is the multiset with \(-q \) appearing \(h^p,q \) times.

\(X \) has good reduction at \(p \) \(\Rightarrow \) \(H^i \) is crystalline.

If \(X \) is an abelian variety, then \(H^1 \) determines \(X \) up to isogeny.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{et}(X_{/\overline{Q}}, \mathbb{Q}_p)$.
Cohomology with \(\mathbb{Q}_p \)-coefficients

Let \(H^i = H^i_{et}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p) \). \(G_{\mathbb{Q}} \) acts on \(H^i \).
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i. Grothendieck–Lefschetz:

$$\#X(\mathbb{F}_\ell) = \sum_i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$ for almost all ℓ.

X has good reduction at $p = \Rightarrow H^i$ is crystalline.

If X is an abelian variety, then H^1 determines X up to isogeny.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X_{/\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_\mathbb{Q}$ acts on H^i. Grothendieck–Lefschetz:

$$\# X(\mathbb{F}_\ell) = \sum_i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$

for almost all ℓ.

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty})$.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i. Grothendieck–Lefschetz:

$$\# X(\mathbb{F}_\ell) = \sum_i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$

for almost all ℓ.

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty})$.

Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \simeq \bigoplus_{p + q = i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X_{/\overline{Q}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i. Grothendieck–Lefschetz:

$$\#X(\mathbb{F}_\ell) = \sum (-1)^i \text{Tr}(\text{Frob}_\ell, H^i) \text{ for almost all } \ell.$$

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty})$.

Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$-equivariant, so $h^{p,q}$ are determined.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{et}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i. Grothendieck–Lefschetz:

$$\#X(\mathbb{F}_\ell) = \sum i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$

for almost all ℓ.

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p\infty})$.

Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$-equivariant, so $h^{p,q}$ are determined.

$\lambda (= \text{HT weights of } H^i)$ is the multiset with $-q$ appearing $h^{p,q}$ times.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X_{\overline{\mathbb{Q}}}, \mathbb{Q}_p)$. $G_\mathbb{Q}$ acts on H^i. Grothendieck–Lefschetz:

$$\# X(\mathbb{F}_\ell) = \sum_i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$

to almost all ℓ.

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p^\infty})$.

Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$-equivariant, so $h^{p,q}$ are determined.

$\lambda (= \text{HT weights of } H^i)$ is the multiset with $-q$ appearing $h^{p,q}$ times.

X has good reduction at p \implies H^i is crystalline.
Cohomology with \mathbb{Q}_p-coefficients

Let $H^i = H^i_{\text{et}}(X/\overline{\mathbb{Q}}, \mathbb{Q}_p)$. $G_{\mathbb{Q}}$ acts on H^i. Grothendieck–Lefschetz:

$$\# X(\mathbb{F}_\ell) = \sum_i (-1)^i \text{Tr}(\text{Frob}_\ell, H^i)$$

for almost all ℓ.

Let $\mathbb{Z}_p(1) \overset{\text{def}}{=} \text{Hom}(\mathbb{Q}_p/\mathbb{Z}_p, \mu_{p\infty})$.

Faltings:

$$H^i \otimes_{\mathbb{Q}_p} \mathbb{C}_p \cong \bigoplus_{p+q=i} H^p(X_{\mathbb{Q}_p}, \Omega^q) \otimes_{\mathbb{Q}_p} \mathbb{C}_p(-q)$$

This is $G_{\mathbb{Q}_p}$-equivariant, so $h^{p,q}$ are determined.

$\lambda (\overset{\text{def}}{=} \text{HT weights of } H^i)$ is the multiset with $-q$ appearing $h^{p,q}$ times.

X has good reduction at $p \iff H^i$ is crystalline.

If X is an abelian variety, then H^1 determines X up to isogeny.
Galois deformations

Let $\rho: G_{\mathbb{Q}^p} \rightarrow \text{GL}_n(F_p)$. Let $X_{\lambda}(\rho)$ be \{\rho: $G_{\mathbb{Q}^p} \rightarrow \text{GL}_n(Q_p)$ crystalline of HT weights λ | $\rho \equiv \rho \mod m$\}. How many connected components does $X_{\lambda}(\rho)$ have? Is $X_{\lambda}(\rho)$ nonempty?

Let $\rho \sim F_p(a) \sim \mu \otimes a_p$. Note that $F_p(a) \sim F_p(b) \iff a \equiv b \mod p-1$. Then $\lambda \equiv a \mod p-1 \iff X_{\lambda}(F_p(a)) \neq \emptyset$ (case λ is a lift) in which case $X_{\lambda}(F_p(a)) \sim \mathbb{Z}/p$.

Galois deformations
Galois deformations

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$.
Galois deformations

Let \(\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p) \).
Let \(X^\lambda(\bar{\rho}) \) be
Galois deformations

Let $\rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$. Let $X^\lambda(\rho)$ be

$$\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda|\overline{\rho} = \rho \mod m \}$$
Galois deformations

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$.
Let $X^\lambda(\bar{\rho})$ be

$$\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \bar{\rho} = \rho \mod m \}$$

▶ How many connected components does $X^\lambda(\bar{\rho})$ have?
Galois deformations

Let $\overline{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$.

Let $X^\lambda(\overline{\rho})$ be

\[
\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}_p}) \text{ crystalline of HT weights } \lambda|\overline{\rho} = \rho \mod m \}
\]

- How many connected components does $X^\lambda(\overline{\rho})$ have?
- Is $X^\lambda(\overline{\rho})$ nonempty?
Galois deformations

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$.
Let $X^\lambda(\bar{\rho})$ be

$$\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda|\bar{\rho} = \rho \mod m \}$$

- How many connected components does $X^\lambda(\bar{\rho})$ have?
- Is $X^\lambda(\bar{\rho})$ nonempty?

Let $\bar{\rho} = \mathbb{F}_p(a) \cong \mu_p^a$.
Galois deformations

Let $\tilde{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$.
Let $X^\lambda(\tilde{\rho})$ be

\[\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \tilde{\rho} = \rho \mod m \} \]

- How many connected components does $X^\lambda(\tilde{\rho})$ have?
- Is $X^\lambda(\tilde{\rho})$ nonempty?

Let $\tilde{\rho} = \mathbb{F}_p(a) \cong \mu_p^a$.
Note that $\mathbb{F}_p(a) \cong \mathbb{F}_p(b) \iff a \equiv b \mod p - 1$.
Galois deformations

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$. Let $X^\lambda(\bar{\rho})$ be

$$\{ \rho : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{Q}}_p) \text{ crystalline of HT weights } \lambda | \bar{\rho} = \rho \mod m \}$$

- How many connected components does $X^\lambda(\bar{\rho})$ have?
- Is $X^\lambda(\bar{\rho})$ nonempty?

Let $\bar{\rho} = \mathbb{F}_p(a) \cong \mu_p \otimes a$. Note that $\mathbb{F}_p(a) \cong \mathbb{F}_p(b) \iff a \equiv b \mod p - 1$.

$$\lambda \equiv a \mod p - 1 \iff X^\lambda(\mathbb{F}_p(a)) \neq \emptyset (\mathbb{Q}_p(\lambda) \text{ is a lift})$$
Galois deformations

Let $\rho : G_{\mathbb{Q}_p} \to GL_n(\overline{\mathbb{F}_p})$.
Let $X^\lambda(\rho)$ be

$$\{\rho : G_{\mathbb{Q}_p} \to GL_n(\overline{\mathbb{Q}_p}) \text{ crystalline of HT weights } \lambda|\rho = \rho \mod m\}$$

- How many connected components does $X^\lambda(\rho)$ have?
- Is $X^\lambda(\rho)$ nonempty?

Let $\rho = F_p(a) \cong \mu_p \otimes a$.
Note that $F_p(a) \cong F_p(b) \iff a \equiv b \mod p - 1$.

$$\lambda \equiv a \mod p - 1 \iff X^\lambda(F_p(a)) \neq \emptyset \text{ (} \mathbb{Q}_p(\lambda) \text{ is a lift) in which case } X^\lambda(F_p(a)) \cong \mathbb{Z}_p.$$
mod p weights
Definition
A **Serre weight** is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$-representation of $\text{GL}_n \mathbb{F}_p$.

Definition

A **Serre weight** is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$-representation of $\text{GL}_n \mathbb{F}_p$.

If $n = 1$, the Serre weights are a-th powers of $\text{St}_a \sim \text{St}_b \iff a \equiv b \mod p - 1$.

$X_\lambda(\mathbb{F}_p(a)) \neq \emptyset \iff \text{St}_\lambda \sim \text{St}_a$.

mod p weights
Definition
A Serre weight is (an isomorphism class of) an irreducible \overline{F}_p-representation of $GL_n \overline{F}_p$.

If $n = 1$, the Serre weights are a-th powers of St.
Definition

A **Serre weight** is (an isomorphism class of) an irreducible $\overline{\mathbb{F}}_p$-representation of $\text{GL}_n \mathbb{F}_p$.

If $n = 1$, the Serre weights are a-th powers of St.

$\text{St}^a \cong \text{St}^b \iff a \equiv b \mod p - 1$.
Definition
A Serre weight is (an isomorphism class of) an irreducible \(\overline{\mathbb{F}}_p \)-representation of \(\text{GL}_n \mathbb{F}_p \).

If \(n = 1 \), the Serre weights are \(a \)-th powers of \(\text{St} \).
\(\text{St}^a \cong \text{St}^b \iff a \equiv b \mod p - 1. \)

\[X^\lambda(\mathbb{F}_p(a)) \neq \emptyset \iff \text{St}^\lambda \cong \text{St}^a. \]
Compatibility of weights

Assume that λ is regular, i.e., $h_p, q \leq 1$ for all p, q.

Let $\eta = (n-1, n-2, \ldots, 1, 0)$.

$\lambda \Rightarrow \text{alg. rep. } V(\lambda - \eta)$ of GL_n.

Conjecture

Let $\rho: G \to \text{GL}_n(\mathbb{F}_p)$.

\exists a set of Serre weights $W(\rho)$ such that $X(\lambda)(\rho) \neq \emptyset \iff W(\rho) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for $n = 1$: If $\rho = \mathbb{F}_p(a)$, then $W(\rho) = \text{St}_a$.

The conjecture holds for $n = 2$ using the p-adic Langlands correspondence of Colmez.
Compatibility of weights

Assume that \(\lambda \) is *regular*, i.e. \(h^{p,q} \leq 1 \) for all \(p, q \).
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q. Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.

The conjecture holds for $n = 1$: If $\rho = F_p(a)$, then $W(\rho) = St_a$. The conjecture holds for $n = 2$ using the p-adic Langlands correspondence of Colmez.
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \leadsto$ alg. rep. $V(\lambda - \eta)$ of GL_n.

Conjecture

Let $\rho : G_\mathbb{Q}_p \rightarrow GL_n(\mathbb{F}_p)$.

\exists a set of Serre weights $W(\rho)$ such that
$X(\lambda)(\rho) \neq \emptyset \iff W(\rho) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for $n = 1$: If $\rho = \mathbb{F}_p(a)$, then $W(\rho) = St_{a}$.

The conjecture holds for $n = 2$ using the p-adic Langlands correspondence of Colmez.
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \mapsto$ alg. rep. $V(\lambda - \eta)$ of GL$_n$.

Conjecture
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \mapsto$ alg. rep. $V(\lambda - \eta)$ of GL_n.

Conjecture
Let $\bar{\rho} : G_{Q_p} \to GL_n(\overline{F_p})$.

Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \sim$ alg. rep. $V(\lambda - \eta)$ of GL_n.

Conjecture
Let $\overline{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\overline{\rho})$
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \mapsto \text{alg. rep. } V(\lambda - \eta)$ of GL_n.

Conjecture

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}}_p)$. \exists a set of Serre weights $W(\bar{\rho})$ such that
$X^\lambda(\bar{\rho}) \neq \emptyset \iff W(\bar{\rho}) \cap \text{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for $n = 1$: If $\rho = F_p(a)$, then $W(\rho) = \text{St}a$.
The conjecture holds for $n = 2$ using the p-adic Langlands correspondence of Colmez.
Compatibility of weights

Assume that λ is regular, i.e. $h^{p.q} \leq 1$ for all p, q.

Let $\eta = (n-1, n-2, \ldots, 1, 0)$.

$\lambda \mapsto$ alg. rep. $V(\lambda - \eta)$ of GL_n.

Conjecture

Let $\bar{\rho} : G_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}_p})$. \exists a set of Serre weights $W(\bar{\rho})$ such that $X^\lambda(\bar{\rho}) \neq \emptyset \iff W(\bar{\rho}) \cap JH(V(\lambda - \eta)(\overline{\mathbb{F}_p})) \neq \emptyset$.

The conjecture holds for $n = 1$: If $\bar{\rho} = \overline{\mathbb{F}_p}(a)$, then $W(\bar{\rho}) = \text{St}^a$.
Compatibility of weights

Assume that λ is regular, i.e. $h^{p,q} \leq 1$ for all p, q.
Let $\eta = (n - 1, n - 2, \ldots, 1, 0)$.
$\lambda \rightsquigarrow$ alg. rep. $V(\lambda - \eta)$ of GL_n.

Conjecture

Let $\bar{\rho} : \text{G}_{\mathbb{Q}_p} \to \text{GL}_n(\overline{\mathbb{F}_p})$. \exists a set of Serre weights $W(\bar{\rho})$ such that $X^{\lambda}(\bar{\rho}) \neq \emptyset \iff W(\bar{\rho}) \cap \text{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset$.

The conjecture holds for $n = 1$: If $\bar{\rho} = \overline{\mathbb{F}_p}(a)$, then $W(\bar{\rho}) = \text{St}^a$.

The conjecture holds for $n = 2$ using the p-adic Langlands correspondence of Colmez.
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and ρ is generic, $\exists W(\rho)$ such that $W(\rho) \cap JH(V(\lambda - \eta)(Fp)) \neq \emptyset \Rightarrow X(\lambda)(\rho) \neq \emptyset$.

Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let ρ be semisimple and generic (n is arbitrary). Then $\exists W^? (\rho)$ such that the conjecture (with $W^? (\rho)$ replacing $W(\rho)$) holds in the tamely potentially crystalline case when $\lambda = \eta$.

What if λ is not regular?
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and ρ is generic, $\exists W(\rho)$ such that $W(\rho) \cap JH(V(\lambda - \eta)(F_p)) \neq \emptyset \Rightarrow X_\lambda(\rho) \neq \emptyset$.

Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let ρ be semisimple and generic (n is arbitrary). Then $\exists W? (\rho)$ such that the conjecture (with $W? (\rho)$ replacing $W(\rho)$) holds in the tamely potentially crystalline case when $\lambda = \eta$.

What if λ is not regular?
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If \(n = 3 \) and \(\bar{\rho} \) is generic

Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when \(\lambda = \eta \).
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that

$W(\bar{\rho}) \cap JH(V(\lambda - \eta)(F_p)) \neq \emptyset \implies X^\lambda(\bar{\rho}) \neq \emptyset.$

Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$. What if λ is not regular?
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If \(n = 3 \) and \(\bar{\rho} \) is generic, \(\exists W(\bar{\rho}) \) such that
\[
W(\bar{\rho}) \cap \text{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \iff X^\lambda(\bar{\rho}) \neq \emptyset.
\]
Moreover, the converse holds in the potentially diagonalizable case.

What if \(\lambda \) is not regular?
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and $\overline{\rho}$ is generic, $\exists W(\overline{\rho})$ such that

$W(\overline{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^\lambda(\overline{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

What if λ is not regular?
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^\lambda(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If $n = 3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that
$W(\bar{\rho}) \cap \mathrm{JH}(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^{\lambda}(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)

Let $\bar{\rho}$ be semisimple and generic (n is arbitrary).
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)

If \(n = 3 \) and \(\bar{\rho} \) is generic, \(\exists W(\bar{\rho}) \) such that
\[
W(\bar{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^\lambda(\bar{\rho}) \neq \emptyset.
\]
Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when \(\lambda = \eta \).

Theorem (L., Le Hung, Levin)

Let \(\bar{\rho} \) be semisimple and generic (\(n \) is arbitrary). Then \(\exists W?(\bar{\rho}) \) such that the conjecture (with \(W?(\bar{\rho}) \) replacing \(W(\bar{\rho}) \)) holds in the tamely potentially crystalline case when \(\lambda = \eta \).
Partial results in higher dimensions

Theorem (L., Le Hung, Levin, Morra)
If $n = 3$ and $\bar{\rho}$ is generic, $\exists W(\bar{\rho})$ such that $W(\bar{\rho}) \cap JH(V(\lambda - \eta)(\mathbb{F}_p)) \neq \emptyset \implies X^\lambda(\bar{\rho}) \neq \emptyset$. Moreover, the converse holds in the potentially diagonalizable case and in the tamely potentially crystalline case when $\lambda = \eta$.

Theorem (L., Le Hung, Levin)
Let $\bar{\rho}$ be semisimple and generic (n is arbitrary). Then $\exists W^?(\bar{\rho})$ such that the conjecture (with $W^?(\bar{\rho})$ replacing $W(\bar{\rho})$) holds in the tamely potentially crystalline case when $\lambda = \eta$.

What if λ is not regular?