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Let X=Y x ... x Y be the Cartesian power of a modular
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Definition

We call a sequence of special points if it has finite
intersection with every proper special subvariety.



Special Subvarieties

Proper Special Subvarieties for n = 2
A special point (x7,x5),
{x} x Yand Y x {x} for x € Y a CM point,

image of a Hecke correspondence T, — Y x Y, e.g. the

diagonal embedding Y Ayxy.



Equidistribution Conjecture

Conjecture

Let {x;}; be a generic sequence of special points in X — the
Cartesian power of a modular curve. Let the probability
measure 1; on X be the normalized counting measure on the
Galois orbit of x;
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Then {u;}; converges weak-+ to the uniform measure
my = my X ... My.
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Weaker Conjecture
Asymptotic density of Galois orbits in the locally compact

topology.
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Class Field Theory

Complex Multiplication

Let x € Y be a CM point. The theory of complex multiplication
implies that the Galois group of the field of definition of x is
isomorphic to Pic(A) and

OrbGaloiS (X) — Oeric(/\) (X)

. . reciproci .
Galois Action =P, Torus Action
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Splitting Condition +
n = 1 case = Any limit measure is a convex combination of the
uniform measure and translates of Hecke correspondences.

Exclude intermediate measures, i.e. translates of
Hecke correspondences.

Express cross-correlation between #; and a Hecke
correspondence via a GA\G X G/TA relative trace where T is the
anisotropic torus /Q associated to H;.

Transform relative trace into a short shifted
convolution sum of ideal counting functions using the geometric
expansion of the relative trace and fine arithmetic invariants (valued
in A-ideals).

Upper bound on shifted convolution sum using a vector sieve.
This is conditional on non-existence of exceptional zeros.
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The method of Ellenberg, Michel and Venkatesh applies with
a fixed single split prime and when
In>0Vvi>1: min Nra < |D;|'/27"

aCA; invertible ideal
aco;

This covers approximately ~ |D;|~"# Pic(A) twists o;.

The new method applies when the extra conditions hold and
Je>0Vi>1: min  Nra> D5 *

aCA,; invertible ideal
aco;

where 0 is the best available exponent in Gauss’s circle
problem for imaginary quadratic fields. The Van der Corput
bound yields 6 =2/3 — 2_367] =1/6.
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