Noncommutative resolutions and intersection cohomology for quotient singularities

Tudor Pădurariu

IAS

September 23, 2020
In algebraic geometry one studies **varieties** which are zero loci of some given polynomials in several variables. We will consider varieties over the complex numbers.

Smooth varieties are complex manifolds. Many interesting varieties are **singular**.

Example of a singular variety: zero locus X of $xy - zt$ in \mathbb{C}^4.
Intersection cohomology

Vector spaces associated to varieties: **singular cohomology**, **K-theory**.

If the variety is smooth and proper, singular cohomology satisfies Poincaré duality.

For singular varieties, **intersection cohomology** (defined by Goresky–MacPherson) has better properties than singular cohomology, for example it satisfies Poincaré duality.

For a resolution of singularities $Y \rightarrow X$, a consequence of the Beilinson–Bernstein–Deligne–Gabber decomposition theorem is that $IH^\cdot(X)$ is a direct summand of $H^\cdot(Y)$. When the resolution is small, $IH^\cdot(X) = H^\cdot(Y)$.
Question 1. Is there a K-theoretic version of intersection cohomology?

Application in representation theory: for 3d Cohomological Hall algebras, the number of generators is given by the dimension of intersection cohomology of some singular moduli spaces.
Noncommutative resolutions

variety $X \leadsto$ (dg) category $D^b(X)$

One can recover $K(X)$ or a periodic version of $H^\cdot(X)$ from $D^b(X)$.

A **noncommutative resolution** (NCR) of a variety X is a smooth dg category \mathbb{D} with a pair of adjoint functors

$$F : \mathbb{D} \to D^b(X), \ G : \text{Perf}(X) \to \mathbb{D}$$

such that $FG = \text{id}$.

Example: category $D^b(Y)$ for $f : Y \to X$ a resolution of singularities of X with rational singularities.

There are more NCRs than standard resolutions.

Strategy for finding NCRs: look at semi-orthogonal decompositions of $D^b(Y)$ for a resolution of singularities $f : Y \to X$
Minimal NCR resolutions

Bondal–Orlov conjecture. For X a variety, there exists a minimal NCR $\mathcal{M}(X)$, i.e. for any NCR \mathcal{M}' of X, there is a semi-orthogonal decomposition

$$\mathcal{M}' = \langle \mathcal{M}(X), - \rangle.$$

In particular, if X is singular and has resolutions of singularities $Y_1, Y_2 \to X$ which are Calabi-Yau, then $D^b(Y_1) \cong D^b(Y_2)$.
Question 2. For X a variety, is there a natural dg category $\mathbb{I}(X)$ such that

$$HP.(\mathbb{I}(X)) = \bigoplus_{i \in \mathbb{Z}} IH^{\cdot + 2i}(X)?$$

For varieties X for which Question 2 has a positive answer, its K-theory will be a version of intersection K-theory.

Categories $\mathbb{I}(X)$ answering Question 2 are natural candidates to be minimal NCRs in the sense of Bondal–Orlov.
Quotient singularities

Let G be a reductive group and V a linear representation of G. Consider the stack $\mathcal{X} = V / G$ with coarse space $X = V \sslash G$.

Example: Let $G = \mathbb{C}^*$ and $V = \mathbb{C}[1] \oplus \mathbb{C}[-1]$ such that G acts with weight 1 on $\mathbb{C}[1]$ and weight -1 on $\mathbb{C}[-1]$. Then

$$V \sslash G = (xy - zt = 0) \subset \mathbb{C}^4.$$

Remark: A large class of Artin stacks \mathcal{X} admits good moduli spaces X (Alper et al.) such that X is étale locally a quotient as above.

Strategy for finding NCRs: consider the “resolution” $\pi : \mathcal{X} \to X$, search for NCRs inside $D^b(\mathcal{X})$.

NCRs of quotient singularities

Theorem (P). There exist NCRs $\mathcal{D}(X)$ of X such that

$$D^b(X) = \langle \mathcal{D}(X), - \rangle,$$

the complement is generated by complexes supported on attracting loci $S \to X$, and $\mathcal{D}(X)$ is minimal with these properties.

Question. When are these categories $\mathcal{D}(X)$ minimal in the sense of Bondal–Orlov?

Example. For $X = \mathbb{C}^4 / \mathbb{C}^* = (xy - zt = 0) \subset \mathbb{C}^4$, the above categories are

$$\langle \mathcal{O}_{\mathbb{C}^4}(w), \mathcal{O}_{\mathbb{C}^4}(w + 1) \rangle \subset D^b(\mathbb{C}^4 / \mathbb{C}^*)$$

for $w \in \mathbb{Z}$. They are equivalent to $D^b(X^+)$ and $D^b(X^-)$, where $X^+, X^- \to X$ are the small resolutions of X obtained by variation of GIT (van den Bergh).
Categorification of intersection cohomology for quotient singularities

Theorem (P). There exist natural subcategories $\mathbb{I}(X) \subset \mathbb{D}(X)$ such that

$$HP.(\mathbb{I}(X)) = \bigoplus_{i \in \mathbb{Z}} IH^{i+2i}(X).$$

We can thus define a version of intersection K-theory of X by $IK(X) := K(\mathbb{I}(X))$.

When $\mathcal{X} = V/G$, there is a version of the above result for noncommutative motives. This implies that $IK(X)$ is a direct summand of $K(\mathcal{X})$.

Application in representation theory (P): for 3d K-theoretic Hall algebras, the number of generators is given by intersection K-theory of some singular moduli spaces.
Thank you for your attention!