Interactive Visualization of 2D Persistence Modules

Michael Lesnick, Columbia

w/ Matthew Wright, St. Olaf

IAS, November 7, 2015
Persistent homology:

- provides invariants of data called **barcodes**
- used for exploratory data analysis/visualization
- many practical tools are available

Fig. by Ulrich Bauer.
Multi-D Persistent Homology

- Associates to data a multi-parameter family of topology spaces.
- Arises naturally in applications.
- No practical tools yet available.

Fig. by Matthew Wright.
RIVET: A practical tool for interactive visualization of 2D persistent homology.

- expected public release: winter 2016
- paper this month
RIVET: A practical tool for interactive visualization of 2D persistent homology.

- expected public release: winter 2016
- paper this month

Mathematical contributions:
- Theoretical/algorithmic framework for **efficient queries** of barcodes of 1-D slices of 2-D persistence objects.
- $O(n^3)$ algorithm for computation of **bigraded Betti numbers**.
- Algorithms for computing 1-parameter families of barcodes.
Agenda:

• Introduce multidimensional persistent homology
• Explain our tool
• Briefly discuss theoretical and algorithmic underpinnings
1-D Persistent Homology
Persistent Homology

Persistent homology associates **barcodes** to data.

Data:
- Finite metric space (point cloud data)
- function $\gamma : T \to \mathbb{R}$, T an arbitrary topological space.
Usually all intervals in a barcode of the form \([b, d)\).

Then we can regard the barcode as a collection of points \((b, d)\) in the plane with \(b < d\).
constructing barcodes
Pipeline for 1-D Persistence

1. Data
2. Filtration
3. Persistence Module:
 - homology with coefficients in field
4. Barcode
 - structure theorem
Filtrations and Persistence Modules

A **filtration** \mathcal{F} is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.
Filtrations and Persistence Modules

A **filtration** \mathcal{F} is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.

In \mathbb{Z}-indexed case, this is a diagram of spaces:

$$\cdots \hookrightarrow F_0 \hookrightarrow F_1 \hookrightarrow F_2 \hookrightarrow \cdots$$

Fix a field k.

A **persistence module** M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R} (or by \mathbb{Z}) and commuting linear maps

$$\{ M(a, b) : M_a \to M_b \}_{a < b}.$$

$$\cdots \to M_0 \to M_1 \to M_2 \to \cdots$$
Pipeline for 1-D Persistence

1. Data
2. Filtration
 - homology w/ coefficients in field
3. Persistence Module
 - structure theorem
4. Barcode
Rips Filtrations

For P a metric space, and $a \in \mathbb{R}$, define simplicial complex $\text{Rips}(P)_a$ by:

- Vertex set of $\text{Rips}(P)_a$ is P.
- $\text{Rips}(P)_a$ contains edge $[q,r]$ iff $d_P(q,r) \leq \frac{a}{2}$.
- $\text{Rips}(P)_a$ is the clique complex on this 1-skeleton.

$\text{Rips}(P)_a \subseteq \text{Rips}(P)_b$ whenever $a \leq b$, so we obtain a filtration

$$\text{Rips}(P) = \{\text{Rips}(P)_a\}_{a \in \mathbb{R}}.$$
Applying i^{th} homology to each space and inclusion map in a filtration yields a persistence module.
structure theorem for persistent homology (\mathbb{Z}-indexed case)
For $a < b \in \mathbb{Z}$,

- call $[a, b)$ a **discrete interval**,
- define the **interval module** $I^{[a,b)}$ by

\[
\cdots \rightarrow 0 \rightarrow k \xrightarrow{\text{Id}_k} k \xrightarrow{\text{Id}_k} \cdots \xrightarrow{\text{Id}_k} k \xrightarrow{} 0 \rightarrow 0 \rightarrow \cdots
\]

\[
\begin{array}{c}
\text{a} \\
\text{b}
\end{array}
\]

- define infinite discrete intervals, interval modules similarly.

Decomposition Thm. [Webb ’85]: For M a \mathbb{Z}-indexed persistence module w/ finite dim. vector spaces, \exists unique collection of discrete intervals $\mathcal{B}(M)$ s.t.

\[
M \simeq \bigoplus_{\mathcal{J} \in \mathcal{B}(M)} I^{\mathcal{J}}
\]

We call $\mathcal{B}(M)$ the **barcode** of M.
Persistent Homology

Figure by Ulrich Bauer.
Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff distance on finite metric spaces.
Stability of PH of PCD

Persistent Homology of PCD is stable with respect to Gromov-Hausdorff distance on finite metric spaces.
Limits of Stability

Persistent homology is NOT stable with respect to outliers.

This leads us to multi-D persistence.
Multi-D Persistent Homology
Bifiltrations

- Define a partial order on \mathbb{R}^2 by

$$(a_1, a_2) \leq (b_1, b_2) \text{ iff } a_i \leq b_i \text{ for } i = 1, 2;$$

- A bifiltration is a collection of topological spaces $\{\mathcal{F}_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) such that $\mathcal{F}_a \subseteq \mathcal{F}_b$ whenever $a \leq b$.
A 2-D persistence module M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) and commuting linear maps

$$\{M(a, b) : M_a \to M_b\}_{a < b}.$$
A 2-D persistence module M is a collection of k-vector spaces $\{M_a\}$ indexed by \mathbb{R}^2 (or by \mathbb{Z}^2) and commuting linear maps

$$\{M(a, b) : M_a \to M_b\}_{a < b}.$$
Applying the i^{th} homology to a bifiltration \mathcal{F} yields a 2D persistence module $H_{i}\mathcal{F}$.
Point cloud data → Bifiltration
Limits of Stability

Persistent homology is NOT stable with respect to outliers.

This leads us to multi-D persistence.
Point cloud data \rightarrow Bifiltration

For P a finite metric space, let $\gamma : P \rightarrow \mathbb{R}$ be a codensity function on P.

- i.e., γ is high at outliers and low at dense points.
Point cloud data \(\rightarrow \) Bifiltration

For \(P \) a finite metric space, let \(\gamma : P \rightarrow \mathbb{R} \) be a **codensity** function on \(P \).

- i.e., \(\gamma \) is high at outliers and low at dense points.
- example: fix \(K > 0 \) and let \(\gamma(x) = \text{distance to the } K^{\text{th}} \text{ nearest neighbor of } P \).
For P a finite metric space, let $\gamma : P \to \mathbb{R}$ be a codensity function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix $K > 0$ and let $\gamma(x) =$ distance to the K^{th} nearest neighbor of P.

Point cloud data \rightarrow Bifiltration
Point cloud data \rightarrow Bifiltration

For P a finite metric space, let $\gamma : P \rightarrow \mathbb{R}$ be a **codensity** function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix $K > 0$ and let $\gamma(x) =$ distance to the K^{th} nearest neighbor of P.

For $a \in \mathbb{R}$, define the **a-sublevelset**

$$
\gamma_a := \{ y \in P \mid \gamma(y) \leq a \}.
$$
Point cloud data \rightarrow Bifiltration

For P a finite metric space, let $\gamma : P \rightarrow \mathbb{R}$ be a codensity function on P.

- i.e., γ is high at outliers and low at dense points.
- example: fix $K > 0$ and let $\gamma(x) =$ distance to the Kth nearest neighbor of P.

For $a \in \mathbb{R}$, define the a-sublevelset

$$\gamma_a := \{ y \in P \mid \gamma(y) \leq a \}.$$

For $(a, b) \in \mathbb{R}^2$, let

$$\mathcal{F}_{(a,b)} = \text{Rips}(\gamma_a)_b.$$

$$\{\mathcal{F}_{(a,b)}\}_{(a,b) \in \mathbb{R}^2},$$
together w/ inclusion maps, is a bifiltration.
Pipeline for 2D Persistence

1. Data
2. Bfiltration → homology w/ coefficients in field
3. 2D Persistence Module
4. Incomplete Invariants
Barcodes of Bifiltration?

Can we define the barcode of 2D persistence module as a collection of nice regions in \mathbb{R}^2?

Not without making some significant compromises.
Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables $M_1, \ldots M_k$, unique up to iso., such that:

$$M \simeq \bigoplus_{i=1}^{k} M_i.$$
Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables $M_1, \ldots M_k$, unique up to iso., such that:

$$M \simeq \bigoplus_{i=1}^{k} M_i.$$

Lesson from quiver theory: The set of possible M_i is extremely complicated.
Theorem [Krull-Schmidt]: For M a finitely presented 2D persistence module, \exists collection of indecomposables $M_1, \ldots M_k$, unique up to iso., such that:

$$M \cong \bigoplus_{i=1}^{k} M_i.$$

Lesson from quiver theory: The set of possible M_i is extremely complicated.

The upshot: There’s no entirely satisfactory way to define barcode of M.
Potentially useful invariants of 2-D persistence modules
Our tool visualizes three invariants of a 2D persistence module:

- Dimension of vector space at each index
- Barcodes of 1-D affine slices of the module
- Multigraded Betti numbers
Dimension of vector space at each index:

- simple, intuitive, easy to visualize,
- Can compute in time cubic in the size of the input,
- tells us nothing about **persistent** features,
- not stable.
Barcodes of 1-D Slices

- Let L be an affine line in \mathbb{R}^2 with non-negative slope.

![Graph showing a line segment from (0,0) to (30,1.5)]
Barcodes of 1-D Slices

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L.
Barcodes of 1-D Slices

- Let \(L \) be an affine line in \(\mathbb{R}^2 \) w/ non-negative slope.
- Restriction of \(M \) to \(L \) is a 1-D persistence module \(M^L \).
- Thus \(M^L \) has a barcode \(B(M^L) \), a set of intervals in \(L \).
Barcodes of 1-D Slices

- Let L be an affine line in \mathbb{R}^2 w/ non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L.
- Thus M^L has a barcode $B(M^L)$, a set of intervals in L.

![Barcode Diagram](image)
Barcodes of 1-D Slices

- Let L be an affine line in \mathbb{R}^2 with non-negative slope.
- Restriction of M to L is a 1-D persistence module M^L.
- Thus M^L has a barcode $B(M^L)$, a set of intervals in L.

Barcodes $B(M^L)$ is stable [Landi 2014, Cerri et al. 2011, Cerri et al. 2013].
Multigraded Betti Numbers

For M an n-D persistence module, $i \in \{0, 1, \ldots n\}$, one defines functions $\xi_i(M) : \mathbb{R}^n \to \mathbb{N}$ by

$$\xi_i(M)_a = \dim \text{Tor}_i(M, k)_a.$$

For $a \in \mathbb{R}^n$,

- $\xi_0(M)(a)$ is the dimension of what is born at a,
- $\xi_1(M)(a)$ is the dimension of what dies at a,

![Diagram showing persistence module]
Let M be a \mathbb{Z}^2-indexed persistence module, $(a, b) \in \mathbb{Z}^2$.

\[
\begin{array}{c}
M_{(a-1,b)} \rightarrow M_{(a,b)} \\
\uparrow \quad \uparrow \\
M_{(a-1,b-1)} \rightarrow M_{(a,b-1)}
\end{array}
\]

We have induced maps

\[
M_{(a-1,b-1)} \xrightarrow{\text{split}} M_{(a-1,b)} \oplus M_{(a,b-1)} \xrightarrow{\text{merge}} M_{(a,b)}
\]

with

\[
\text{merge} \circ \text{split} = 0.
\]
Bigraded Betti Numbers

Let M be a \mathbb{Z}^2-indexed persistence module, $(a, b) \in \mathbb{Z}^2$.

We have induced maps

$$
\begin{array}{ccc}
M_{(a-1,b)} & \longrightarrow & M_{(a,b)} \\
\uparrow & & \uparrow \\
M_{(a-1,b-1)} & \longrightarrow & M_{(a,b-1)}
\end{array}
$$

We have induced maps

$$
M_{(a-1,b-1)} \xrightarrow{\text{split}} M_{(a-1,b)} \oplus M_{(a,b-1)} \xrightarrow{\text{merge}} M_{(a,b)}
$$

with

$$
\text{merge} \circ \text{split} = 0.
$$

For $i = 0, 1, 2$, define $\xi_i(M) : \mathbb{R}^2 \rightarrow \mathbb{N}$ by

$$
\begin{align*}
\xi_0(M)(a,b) &= \dim M_{(a,b)}/\text{im merge} \\
\xi_1(M)(a,b) &= \dim \ker \text{merge}/\text{im split} \\
\xi_2(M)(a,b) &= \dim \ker \text{split}.
\end{align*}
$$
RIVET
An Example

- Codensity-Rips Bifiltration on noisy PCD circle
- 240 points
- \(\sim 200,000 \) simplices
- Round distances and codensities to lie on a \(30 \times 30 \) grid,
- 1st persistent homology
Mathematical contributions:

- **Theoretical and algorithmic framework for interactive visualization of barcodes of 1-D slices,**
- **Novel algorithm for fast computation of multigraded Betti numbers.**
- **Algorithms for computing 1-parameter families of barcodes.**
Let M be a 2D persistence module.

We define a data structure $A(M)$, the **augmented arrangement of M**, on which can perform fast queries of $B(M^L)$ for any line L.

$A(M)$ consists of:

- a line arrangement in $(0, \infty) \times \mathbb{R}$,

- for each 2-cell e, a collection P^e of pairs $(a, b) \in \mathbb{R}^2 \times (\mathbb{R}^2 \cup \infty)$.

We call the P^e the **barcode template** at e.
Point-Line Duality

Let Λ = the set of affine lines with finite, positive slope.

Define dual maps

$$D_\ell : \Lambda \to (0, \infty) \times \mathbb{R}, \quad D_p : (0, \infty) \times \mathbb{R} \to \Lambda$$

$$D_\ell(y = mx + b) = (m, -b)$$

$$D_p(m, b) = (y = mx - b).$$
For any $L \in \Lambda$, we have a map

$$\text{push}_L : \mathbb{R}^2 \rightarrow L,$$

which sends each $u \in \mathbb{R}^2$ to the closest point of L above or to the right of u.

![Diagram showing the push map](image-url)
Main Theorem

Theorem [L., Wright 2015]: For M a 2-D persistence module, $L \in \Lambda$, and e any 2-D coface of the cell in $\mathcal{A}(M)$ containing $\mathcal{D}_{\ell}(L)$,

$$\mathcal{B}(M^L) = \{ \text{push}_L(a), \text{push}_L(b) \mid (a, b) \in \mathcal{P}^e \},$$

Ex: $\mathcal{B}(M^L) = \{ I_1, I_2 \}$ \quad $\mathcal{P}^e = \{ (a_1, b_1), (a_2, b_2) \}$
complexity
Queries

Let κ be minimal number of vertices in a rectangular grid containing $\text{supp } \xi_0(M) \cup \text{supp } \xi_1(M)$.

Proposition: For a generic line L, we can perform a query of $\mathcal{A}(M)$ in time $O(\log \kappa + |\mathcal{B}(M^L)|)$.
Proposition: For fixed i and \mathcal{F} a bifiltration of size m, constructing $A(H_i \mathcal{F})$ requires

$$O(m^3 \kappa + (m + \log \kappa)\kappa^2)$$

elementary operations and

$$O(m^2 + m\kappa^2)$$

storage.
Proposition: For fixed i and \mathcal{F} a bifiltration of size m, constructing $A(H_i\mathcal{F})$ requires

$$O(m^3\kappa + (m + \log \kappa)\kappa^2)$$

elementary operations and

$$O(m^2 + m\kappa^2)$$

storage.

Remarks:

• most expensive steps are embarrassingly parallelizable
• Algorithm involves computation of the Betti numbers.
Preliminary Timing Results

A snapshot from our current code. Several important optimizations are not yet implemented; substantial speedups are ahead.

Data:
- Codensity-Rips Bifiltration on noisy PCD circle
- codensity and distance each coarsened to lie on 20x20 grid
- Truncated Rips filtration on 400 points,
- 6,00,000 simplices
- (slow) 800 MHz processor

Betti numbers:
- H_0: 4 Sec.
- H_1: 13 minutes

Augmented arrangement
- H_0: 11 minutes
- H_1: 16.4 hours
thank you!!